
- - --= s u~i~-~ION PAGE

AD-A265 203-06SP9
~ l~ ~ l3 REPORT TYPE ANW) DTSZ~ý

N~41ALj/ 0 ; AUGt 14 TO06SP9
4. TITLE AND SUBTITLE J5 FLJND;NC; *SA

FAST ADAPTIVE MANEUVER ING EXPER IMENT
(FAME) (U)

6. AUTHOR(S)

Prof essor Kenneth J. H-lint;: AFOSR-9l-0372:

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) .. ' ýVt oo:AI

George Mason University IREPOR7 NUMBiR

El ectrica 1/C~omputter Engineering AF0SR.TP.- c 9
Fairfax VA 22030

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSC;.NC V. INTOFkING

AFOSR/1% P&AECME-R' ýVF

110 DUNGAN AVE, SUTE Bl15 a tAFOS1- 91 -03-72

12a. DISTRIBUTION WAVAILABILITY STATEMENT IbD

APPROVED) FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED UL.

113. ABSTRACT (Maximum 200 words)

The Fast-, Adaptive Maneuvering E..periment (FAME) is designed to provide nietral
rnetwork (NN) researchers with a physical., non-linear system of modest

dimiensionality with coupled dynamics, Th(, syst-em to be controlled is a
cornmerically available model electric helicopter (Whisper) which is secured to a
comercLally-a'Jailable st-and (FIlitemaster, Jr.) which has been modified t~o li--mit its
range of motion and make it suitable for laboratory operatl-ion. The stand hits been
instru~ment~ed with potenitiomreters to me~asu-re all 65 degrePS-of -freedom (6-D0F1 ,. hi
order to make the interface t:o the syjstem as simple as possible a Motorola MG6SIIC1I
rnicroc~ont ro~ller uinit. (MCU) has been employed to implemient the RS -2112 commutni-cat ions
protocol-, convert: t--he Voltages on t~he potent-iomet:ers i~nt~o anlgles (8-hit
quarit-iza tion), erform the coordinate convers ions 1--o a C'art esi an space. replyv t o
requests from the NN con'troller for he 1i.copt .er posit ion, and tranlslqte Comlma rds

t;rom t:he NN conrtroll er i n~to appropriate servo. commanrds.

14. UBJE5 12 jO 293-10644

17. SECURITY CLASSIFICATION 1B SECURITY CLASSIFICATION 19 StkAC'~

TOF ý fjjt IF, -l O. 1, ~tS 0' 1,11 "1D AR; A' MLO

Report on the

Fast Adaptive Maneuvering Experiment (FAME)

Sponsored by the

Air Force Office of Scientific Research (AFOSR)

Contract # AFOSR-91-0372

Sponsor: Captain Steve Suddarth, Math ýnd Computer Science, (202)767-5028

March 29, 1992

Kenneth J. Hintz, Ph.D.

Department of Electrical and Computer Engineering

and Center of Excellence in C31

George Mason University

Fairfax, VA 22030

* (703)993-1592

0

0 INI IIi

Report on the

Fast Adaptive Maneuvering Experiment (FAME)

Sponsored by the

Air Force Office of Scientific Research (AFOSR)

Contract # AFOSR-91-0372

Sponsor: Captain Steve Suddarth, Math and Computer Science, (202)767-5028

March 29, 1992

Kenneth J. Hintz, Ph.D.

Department of Electrical and Computer Engineering

and Center of Excellence in C31

George Mason University

Fairfax, VA 22030

(703)993-1592

Table of Contents

L ist o f T ab le s

L ist o f F igu res .

1. Introduction

2. Major Components

2.1. Stand ...-

2.2 Kalt Whisper Helicopter

2.2.1. Servos 9

2.2.2. Gyro ..

2.3. M68HCI1 EVB 10

2.3.1. Buffalo M onitor

2.3.2. Pow er Supply

3. Operational Interface ... 14

3.1. MC68HC II Communications 14

3.2. Workstation/MC63HC1 I Message Formats 15

3.3. Workstation (PC) Communications I

3.4. Coordinate Conversion ... ,6

3.5. Servo Outputs

3.6 A/D Input Block ... 1

3.7. System Verification Software T

3.8. Calibration 1

• 3.9 DOF Range Limitation ... 19

3.10 Connector Wiring ...

0 FA.IE,'AF3R s..... 2, "

4. Softw are Developm ent

4.1. Foreground/Background Software Design .

4.2. M68HCI IEVB Buffalo Monitor

4.3. INTROL C Cross-Compiler/Cross-Assembler

5. System Support

5.1. Spare Parts (suppliers)

5.2. Acknowledgements

6. Appendices

6.1. Appendix I: MC68HCIl C Source Code

6.2. Appendix II: MC68 HC1CI Assembly Source Code 62

6.3. Appendix III: Linker Command File 63

6.4. Appendix IV: PC (Workstation) Software 67

6.5. Appendix V: Mechanical Drawings 82

FAMEVAFOSR Hintz. March 29, 1992

2

List of Tables

* Table I Jumper settings for M68HCIIEVB

Table H1 Signal description for 6-pin Molex connector supplying power to san..

Table III WorkstationlMCU Message formats.....................

Table IV Servo block connections

Table V A/D converter signal/pin assignments

Table VI PC keyboard controls

Table VII Signal description for 4-pin Molex connector supplying power to MC.,)HCi IE\% B

0

* DTIC 'T -'--- !" 3

Accession For

D7iC T:.3 5

ru . +' i, <• c

..
U, ur a .. / •

9 FAME/AFOSR Hinrm March 29, 1992

6

List of Figures

Figure I Major system components

Figure 2 Bracket supporting potenuometer at center of base (H) of stand-

Figure 3 Relative location of brackets and potentiometers at middle joint.

Figure 4 Bracket for supporting azimuth potentiometer at middle joint ->

Figure 5 Bracket for supporting elevation potentiometer at middle joint............ 5

Figure 6 Adapter shaft to connect potentiometer to H-potentiometer and Azimuth-

Potentiom eter

Figure 7 Adapter to connect elevation potentiometer to parallel elevation arms.

Figure 8 Bracket to support yaw potentiometer which connects directly to virtical hedo support

shaft.. ...

Figure 9 Re -.ve location of support components at helicopter end of stand ...

Figure 10 Shaft to support helicopter and connect to yaw potentiometer. Length could be

extended to increase range of motion and still prevent tail rotor/boom stikes to stand. . 9

FAMEIAFOSR Hintz March 29. 1992
4

1. Introduction

The Fast Adaptive Maneuvering Experiment FAME) is designed tu prod: Ic neural nct'.or, .", N

rese.rchers with a physical, non-linear system of modest dimension.lit% '.,ith ýoupk,'d d',nami P-"

system to be controlled is a commercially available model electrc helicopter • Whisperi xhich is

secured to a commercially-available stand (Flitemaster Jr) which has been modified to limit its ra.,c

of motion and make it suitable for laboratory operation. The stand has been instrumented ki thw
potentiometers to measure all 6 degrees-of-freedom (6-DOF). In order to make the interface to thc

system as simple as possible, a Motorola MC68HCIl microcontroller unit (MCU) has been cmrpioý•c,_

to implement the RS-232 communications protocol, convert the voltages on the potentiometers into

angles (8-bit quantization), perform the coordinate conversions to a Cartesian space, reply to recqucs,

from the NN controller for helicopter position, and translate commands from the NN controller into

appropriate servo commands.

The source code for all of the software which has been developed for the MCU and the PC

communications is provided with the stand so that local modifications can be made as needed. It is in

a highly modularized form which allo,,,, easy modification once the underlying principle of the

software design is understood. A modified commercial MCU board was used (Motorola

M68HCI IEVB) in order to minimize expenses and provide a limited development/software

modification capability to individual researchers. The monitor program on the board has been left

intact and can be accessed through the second serial port on the board using Kermit or other terminal

emulation software. Actual software development was done using a PC-based C cross-compiler and

cross-assembler which supports ANSI C.

The software on the MCU is resident in two forms. The Motorola Buffalo monitor is in its original

form on ROM. The board has been modified to incorporate a 32-k byte SRAM with self-contained

battery backup (nominal 10 year life). This memory was chosen to enable ease of local software

modification as well as easy incorporation of updated software in the field. For all practical purposes,

the lower half of memory is populated with non-volatile SRAM in which the program is stored.

Conflicts with internal RAM and memory mapped registers are not a problem since the MC68HCI I

accesses internal memory when it is available. With this approach, field changes can be made by

FAME/AFOSR Hintz. March 29. 1992

modifying the stored program directly through the Buffalo monitor rather than ha neg wcr.

reprogram erasable-programmable read only memories (EPROMS),

A calibration program is included as part of the software so that pre,-ise mechanical a.hgnrre,,nt o;

stand is not required. If for some reason the stand has been disassembled and the potentiometers

moved, this program can be used to realign

them in software. The user is prompted to put

the movable pans of the stand in certain

positions. The MCU then reads the

potentiometers, calculates the ne, offsets an,;

scale factors and stores them in on-chip

nonvolatile SRAM. There is no need to

recalibrate unless the stand is disassembled or

the potentiometers moved from their calibrated

W positions.

(w• Consideration was given to a number of

Figure 1 Major system components. safeguards which could be incorporated in the

MCU software, but which have not been

implemented. It was felt that any "Deadman's Switch" included in the software would be too intrusive

on the desires of NN researchers and limiting on the flexibility of their software design. The hazards

of operation of this system should not be taken lightly and, at the very least, appropriate eyeware

should be worn when operating the system.

2. Major Components

Three major subsystems comprise FAME: the stand, the helicopter, and the MCU interface. Each of

these componet has been modified to integrate them into a single system which can be controlled via

requests and commands passed to it through an RS-232 interface. The following details the

modifications which have been made to each as well as information which may be useful to those who

are unfamiliar with model helicopter operations.

FAME/AFOSR Hintz. March 29. 1992
6

2.1. Stand

The stand is a modified commercially available Flitemaster Junior. This stand t.uý '1'

novice helicopter flyer to learn to hover and maneuver electrc or small gzas hehcoptcrý .2' :>

danger of crashing. Although the range of motion is limited, the stand can assist ;n Tc I" m:M

of a pilot's mental framework ana the eye-hard coordination necessary for control of ihi .

system.

The Flitemaster was chosen primarily because it had 6-DOF incorporated in the basic design.

Although there are other stands available, this is the only one which has full 6-DOF. As purchtacc,.
the stand needs to be modified to make it suitable for NN control of the helicopter. Modfication'S 1

the stand are as follows:

1. All axes have been fitted with 5k Ohm linear potentiometers which are supplice % iih

5 Volts. The potentiometers' outputs are convened by the MCU's A/D con,,eriers for

angular measurements.

2. A wheel has been added to support the lowest arm to relieve stress on the lo',est Joint

(the center of the H-frame) and improve the accuracy of position measurements.

3. The nylon block support system at the helicopter end of the stand has been replaced

with double roller-bearings in order to reduce friction and provide structural support

and rigidity to the replacement shaft which supports the helicopter itself.

4. The final nylon-steel ball/socket helicopter support was replaced with an inverted.

metal joystick. The potentiometers on this joystick provide roll and pitch angle

measurements. A difficulty associated with this support arrangement which has not

been resolved is that the center of rotation is below the center of mass of the

helicopter and therefore during takeoffs Le helicopter platform must be supported to

keep it level and stop rotation.

5. Brackets were added to hold the potentiometers which measure joint angles. In some

cases, the brackets are also used to limit the range of motion of joints (primarily ,aw

and the lowest joint at the center of the H). These range limiting mechanisms must

not be tampered with or the potentiometers (which do not have a full 360 degrees of

motion) will be damaged. Shaft encoders could have been used to allow full range o'

motion, but this would have been at a significant ex-vnse which the budget would not

FAME/AFOSR Hintz. March 29. 1992

allow. If potentiometers are removed/replaced/adjusted, care must ,e 1,akr,

that they are secured in such a position that the full range of motion or the ictri .

not damage the potentiometer.

6. The spring support at the middle joint has been modified by changing spnngs an.,:

adding turnbuckles. Modifying the geometry of the spnnging is ineffecttxe 'n

compensating for the additional weight of the helicopter and MCI. Some

compensation is made with the removal of the battery from the hehcoptcr. 'u ,

springs are needed to mass balance the system.

7. Wiring has been added to provide electrical power to the MCU, pcwer to the .'-.

helicopter motor, and carry the joint potentiometer signals to the MCUs AD ter

conversion.

The stand should be secured to the flrir and an area cleared to insure unimpeded flight of the

helicopter. If a permanent mounting cannot be made, two or more 25 lb bags of lead shot have been

used to keep the H-frame immobile while the helicopter is flows.

2.2 Kait Whisper Helicopter

The helicopter is manufactured by Kalt and is commercially available as the Whisper. The helicopter

and spare parts are available at local hobby shops. Because the Whisper utilizes an electric motor as

power for the main rotor it must carry a nickel-cadmium (NICAD) battery on board for power In

order to carry this load, the frame is very light and therefore not very strong. It will not take mucn

abuse. In particular, the ball links which actuate the controls are particularly easy to break and the ue

of ball-link pliers for disassembly is strongly enc,.,;raged.

The Whisper kits were purchased in almost-ready-to-fly (ARF) form. Experience has shown that the

modest differenc in price between the kit and the ARF kit is well worth the savings in construction

time. The ARP kb have been completed and the helicopter adjusted and aligned. The helicopter

construction nuinals are delivered with FAME, but alignment is a tedious process and should not be

necessary except in the event of mishap. In particular, do not remove the tape from the main rotor

blade(s). This tape is used to balance the rotors as well as a sighting device when the blades are

FAMEIAFOSR Hinz March 29, 1992

8

aligned for proper tracking (both blades following the same pathi. Perfect 1r-,ickmn.2ut

obtain, and the systems are adjusted as close as possible when delivered.

There nre two switches on the plate which supports the helicopter. The onioif swm.h supplies po,•cr

to the electric speed controller. This switch is used in normal helicopter installations with radic,;

provide a regulated voltage to the radio receiver. There is a second switch, a push-button. ,hich

enables the speed controller to supply electricity to the motor. T1here are two switches in the norm..,

hobby installation so that the radio receiver can be enabled and a check made to insure that the ::: 2

is at such a setting that the motor will not turn when the motor is enabled. If power is not -,uppijc,

the MCU when the push button is enabled, unpredictable results will occur Ithe motor could start

tu.-ning and hit the person actuating the button). Insure that the MCU is operating and that the grckr

light is lit on the motor controller before pushing the button. The initial setting of the throttle t'% ,kC

MCU is at its minimum value.

2.2.1. SERVOS

Ball bearing servos are used throughout to insure long life and reliahility. The particular servos used

are Futaba FPS-133. While the operation of the servos is transparent to the users, a brief explanation

of the electrical mode of actuation follows. Each servo is controlled by a 5 VoL pulse of variable

width. A pulse width of 1.0 ms positions the servo at an extreme end of its rotation. A pulse width

of 2.0 ms positions the servo at the other extreme end of its rotation. The nominal zero for the serv-o

occurs at a pulse width of 1.5 ms. The angle between these two extremes is proportional to the pulse

width between 1.0 and 2.0 ms. The exact values are not given here since there .re servo-servo

differences and the linkage is not necessarily linear between the servo and the control zc,uated (.usuall,

rotary to linear motion conversion is involved with a limited range of linear operation). That is, the

resultant amount of control action is not necessarily linearly related to the servo command.

The servo doa nwt respond to a single pulse width command, but the command must be repeated at

regular intervals to insutm complete motion to the commanded angle. In order to relieve the NN

controller of this burden, the MCU interface continuously sends the commanded pulse width to each

servo. The software is designed such that a two bytes control word cover- the complete range of

motion of each servo. That is, the pulse width in units of 500 ns/unit are transmitted as unsigned

FAMEAFOSR HinZ March 29, 1992
9

integers (e.g., 2000 decimal = 1.0 ms). The actual pulse width is generated using he u ,w.pu,:

of the MC68HCI I and is a background process under the control of intemaptL

One servo is not mechanical and that is the speed controller. The format of the control sign,t1. ior . ,

the same as the other servos, but it is solid-state and has no moving parts. This improves rehtx.•!i,, .I,

well as accuracy of control over other methods which have a mechanical servo controlling the po'u:ti

of a high curry .! potentiometer. With this method, there is little wasted energy, since the SS •,.cc

controller is operated in a switching mode. Normal model helicopter have a mixing function

incorporated either on the helicopter or in the transmitter. This mixing function couplIcs the ,hro.,.,

(SS speed controller) to the collective pitch. These are not coupled in the MCU implementation :ind

are completely separate channels available for individual control.

2.2.2. GYRo

There is one single-rate Futaba gyro mounted on the helicopter for yaw stabilization. The normal

configuration for a yaw rate gyro is to have the tail rotor signal from the receiver (the 1.0 to 20 ms

pulfe) conrected to the gym. The gyro then modifies this pulse width according to yaw-dot to

generate a yaw disturbance negative "eedback signal. The Futaba model number of this special g., ro

for electric hel:copters is Futaba G- 155.

In the FAME configuration, the yaw rate gyro i driven by a 1.5 ms pulse from the MCU in response

to a position measurement command from the workstation. The pulse-width gyro output is then read

by the MCU and converted to an eight-bit signed value. This value can then be returned to the

workstation along with the 6-DOF coordinates. Although the electrical connections are ..niade on

FAME, the software does not yet implement this function.

2.3. M68HCll EVB

Motorola sells an evaluation board based on its MC68HCI I microcontroller (MCU) This board was

selected becaus-)f its low cost and inclusion of the port replacement unit (PRU). The PRU .Jlows

the MCU to be operated in the expanded mode (one of its four modes of operation) while retaining all

of the original ports as if it were operating in the single-chip mode. Operation in the expanded mode

FAME/AFOSR Hintz. March 29. 1992

t0

allows for the virtual memory (64 kbytes) to be fully populated with either RA.M1 or RuNI I:2

additional ROM is required because of an early decision to write as much code as pc~>it>c n (:

order to make it easier for the user to modify it to suit his particular needs. The pnntl ;. arlý]

functions in particular require a lot of space. These printing functions are pnmarlný u.cd An:n :,:

optional monitor is attached and operating in a terminal mode.

An additional reason for using the evaluation board is that it comes with complete circuit J;jgra:lsm.,

well as a complete hardware reference manual. Also bundled with it is a bare-bones cross- assembler

(non-macro) which could be used in a pinch to make necessary modifications to the MCU code

The board as it comes from the factory is stuffed with 8 kbytes of RAM at address SCOOC and th:', :.

retained. A SRAM of 32 kbytes is added to insure sufficient space for a high-level language program

The SRAM chosen has a built-in battery backup
Table I Jumper settings for M68HC11IEVB.

so that it retains its memory even when power is TableI _Jumper _settings _for __68HCI ______

removed. The SRAM acts as if it were an

EEPROM except that it is much easier to Jumper Number Setting

modify in that it only needs to be written to just I Open

like any other RAM. While EEPROM has a 2 2-3

sufficiently short access time during operation, it 3 Open

has an unacceptably long programming time. 4 1-2 (Buffalo)

Minor modifications are made to the board and 2-3 (FAMEmain)

the socket for an optional 8 kbyte RAM ($6000) 5 9600

is used to hold the 32 kbyte SRAM. The 6 Closed

following modifications are required to utilize 7 Open

the Dallas DS1230Y-150 32kx8 nonvolatile

SRAM on the M68HCI 1EVB:

1. Replace R2 (10 kOhm) with

approximately 3.3k Ohm. Smaller values will cause the M68HCI I to sink too much

current. Larger values prevent the passive pullup from charging the input to the chip

sufficiently fast. Occasional errors occur in memory if this is not done.

FAME/AFOSR Hintz. March 29. 1992
11

2. Disconnect Jumper B3 to disconnect chip select from chip select decoder. Addre. t,::

15 is used as CS- to select the .er half of memory.

3. Cut the trace to pin II/U12E ei.,,.tively removing R/W* from pin 1I.

4. Connect pin I /UI2E to pin 1/UI2A effectively suppling the E-,:lock to pin Ii

5. Connect pin 20/U4 to pin35 of U10. This connects A15 to CS- of the SRAM

6. Cut the trace between pin 26/U4 and pin 28/U4.

7. Connect pin 26/U4 to pin 37/U 10. This connects A13 to the SRAM.

8. Connect pin 1/U4 to pin 36/U10. This connects A14 to the SRAM.

The normal 8kx8 SRAM at $COOO (US) can be retained and is needed to run the calibrate program

The addition of the 32kx8 effectively fully populates the lower half of M68HCI I memory. Thosc

memory addresses which are internal to the M68HCI I remain so and there is no conflict betvween the

external SRAM a ,nternal locations. The memory between $4000 and $5FFF may be unusable

depending on whether you program modifies the SCI control flip-flop. UI I B.

As delivered, the jumpers on the MC68HCI IEVB board should be as listed in Table 1.

All signal interconnections are made to the board through the 60 pin connector. Power (0 V, +5 V) is

supplied to the 6-DOF potentiometers from the MCU board through an eight position Dean's

connector female block. Ground and signal lines are supplied to the helicopter servos through another

block. Plus 5 Volts is not supplied from the MCU board since excessive current drain during servo

actuation causes the board to malfunction. Power is supplied to the servos from the speed controller

servo (SCS) which has an internal regulator. The SCS regulates its +12 Volt supply voltage down to

+5 volts and normally powers the receiver and servos. In FAME, this regulated +5 Volts is distributed

to the servos through the servo connector block. A common ground is provided between the MCU

and the SCS.

If it is desired to have an external restart button, pin 17 of the 60-pin connector can be extended off

the stand along with a gound wire. Grounding pin 17 of the 60-pin connector will restart the board

as long as jumper J I is in place.

FAMEJAFOSR Hinrz. March 29, 1992

12

2.3.1. BLFFALO MONITOR

As delivered from Motorola, the evaluation board has a resident monitor called Buffalo. This mnoucr

has a limited repertoire and is designed for hands on experimentation at a simple level. Since the

monitor does allow some direct access to the MCU as weUl as the ability to download Motorola S-

record format files, it has been maintained. Whether to restart in Buffalo or in the normal FAME

operating program is determined by jumper 14. If connected between pins I and 2 restart cause.,

Buffalo to come up. If 14 is connected between pins 2 and 3. then the FAMEMAIN program bcglin

to execute after pushing the restart button.

Documentation for Buffalo is found in the evaluation board manual. When uploading S-record torenat

Files using Kermit, be sure to include the \,) on the transmit command so handshaking protocol is

eliminated, e.g., "Transmit FAMEmain.0 N0". This does not appear to be a problem using PROCOMM

in the ASCII file upload mode. Note that one uploads a file rather than downloads it to the MCU.

Due to differences in the way operating system BIOSs handle CR/LF, FAME software was compiled

with only \r rather than \rf,. If lines overwrite themselves, enable a switch on your terminal program

which converts CRs to CR/LF.

2.3.2. POWER SUPPLY

Two power supplies are required for operation of FAME. One is supplied, the other must be locally

obtained. The one supplied is a used IBM PC, 63 Watt power supply which is sufficient to power Lhe

MCU board and has the requisite +12, -12, and +5 Volt taps. The second power supply which is

required is 9.6 to 12 Volts for powering the helicopter motor. A circuit diagram of one used at Drexel

University is included in the appendix. A 9.6 Volt, 1000 mAh NICAD battery is provided to get you

started, but will only supply enough current for 10-15 minutes of operation. These are the normal

flight batteries. This battery should be recharged at the normal c/10 rate of 100 mA. Quick charging

is possible if cam is taken to not overcharge the batteries. Constant voltage charge is NOT an

acceptable metbod for recharging NICAD batteries. Twelve Volt Gel-Cell batteries are

recommended if a sufficiently robust power supply cannot be obtained. Conventional wet-cell lead

acid batteries can be used if proper ventilation is maintained during recharging to prevent hydrogen

buildup. Normal current draw for the motor is in excess of 10 Amperes.

FAME/AFOSR Hinm March 29. 1992

13

T-,he power fur the servos is supplied through the electronic speed controller, so. in orderr:ric ,o',

to function under 68HCI I control, power must be supplied to the speed controller and it must tbe

switched on. As long as the push-burton is not pushed, power will not be supplied to the motor,

although the green and red lights on the speed controller will change as it is still receiving comrarnýnz

The +5 from the speed controller and the 68HC1I1EVB are not tied together. There is a common

ground reference between the two so that the signals from the EVB can control the ser,,os.

3. Operational Interface

The basic communication principle employed between the users workstation and the MCU is that ,he

MCU responds to commands passed to it from the workstation over an RS-232 bidirectional

connection operating at 9600 baud. Commands include servo control data and position requests

among others. These commands/requests are in the form of a serial byte string comprising a start

character, a control character, one or more data bytes, a checksum, and a stop character. The message

format must be exact or it is rejected. The user's workstation software should check for a response

from the MCU within a short time to insure that has received the message and is working properly

The accompanying PC based software incorporates such checking.

3.1. MC68HCl1 Communications

There are two serial communication ports on the M68HC1IEVB. The one which is internal to the

MCU is used for communications with the workstation and is under the direct control of the

FAMEMAIN.C program. The other serial port is handled by an off-chip 8250 UART and is used to

communicate to a terminal (usually a PC running a terminal emulation program such as Kermit or

Procomm). In normal operation. the terminal does not need to be connected and is only necessary for

using the BUFFALO monitor, downloading modified programs, or using special testing software.

Serial communIlons to/from the workstation are handled in the MCU through an interrupt dnven

Serial Comun i- Interface (SCI) routine, The complete message is stored character by character

as it is received and the checksum and format verified before a semaphore is set indicating the

reception of a complete message. When the foreground detects this message received semaphore, it

enables other foreground and background functions to take place by setting or clearing other

FAMEIAFOSR Hinz March 29. 1992
14

semaphores. The dichotomy between
Table H1 Signal description for 6-pin M1olexforeground/background emphasizes thecontrsppygpwetotadconnector supplying power to stand.

architectural uniqueness of the MCU in that

many functions can be performed in hardware Pin Number DPi ume Description IColor Code
with interrupts indicating their completion.

Extensive use is made of this feature so that BMotor Gnd Thck
Black #2

TX/RX communications can be maintained in 2 Motor +12V Thick Red

the background while interruptable foreground ý'; 12)

processes continue. 3 6811 Gnd Black

4 6811 +5V Brov n

3.2. WorkstationIMC68HCll Message 5 6811 -12V Red

Formats 6 6811 +12V Orange

There are several messages which can be sent

between the workstation and the MCU. The

start character is ASCII "S" and the stop

character is ASCII "s". The checksum is the modulo 256 sum of all data except the start character.

the checksum byte and the stop character. The position variables are all 16-bit integers and the most

significant byte (MSB) must be put in PostTXbuffTi] and the least significant byte in PosTXbuf~i,-1 7

Data are not encoded as characters, but are the actual binary values which must be concatenated. The

number in parenthesis is the position of the character or byte in the message string. The available

messages are listed in Table III.

3.3. Workstation (PC) Communications

In order to verify proper software operation, a communications protocol interface is supplied which is

PC based If a PC is not available, then the C source can be recompiled for alternative machines. The

program is not a control program, but rather the skeleton of a communications routine which would be

included as pm ipf a neural network control implementation. Of particular interest to PC users is the

interrupt service roine for serial communications. MS-DOS does not use an ISR for serial

communications and is therefore not suitable for MCU communications. This difficulty is

circumvented by installing an ISR to handle serial communications. There appears to be

incompatibilities among PC hardware and the software is not guaranteed to work on all PCs. It was

FAME/AFOSR Hintz. March 29. 1992
15

Table DI1 Workstatior4/MCU Message formats.

ORIGINATORR MESSAGE MESSAGE STRING

Workstation Request Position Values Start Char(O), R(1), Stop Char(2)

Workstation Command Servo Control Start Char(O), C(l), Servo Control Values(2-I.
Checksum(12). Stop Char(13)

Workstation Request Potentiometer Start Char(O), _(1), Stop Char(2)
Values (not yet
implemented)

MCU Send Position Values Start Char(O), P(l), X(2-3). Y(4-5,, Zý6-`).
Roll(8-9), Pitch(10- lI), Yaw(l12-13 1,
Checksum(14), Stop Char(15)

MCU Send Acknowledgement of Start Ch.), A(l), Stop Char(2)
receipt of control values

MCU Send Potentiometer Values Start Char(0), _(I). H-Pot(2-3). Az-Pot(4-5,.
(not yet implemented) El-Pot(6-7), Roll Pot(8-9), Pitch Pot(1O-11).

Yaw Pot(12-13), Checksum(14). Stop Char(15)

developed using Borland C++ and ran successfully on an ATT-6300 (286) and an INTRA LT-386sx

laptop (it did not run on a Zenith 386/16).

3.4. Coordinate Conversion

The measurerr --ts of the 6-DOF are not made in Cartesian space but rather in joint space. These

angular meas, .aents are convened by the MCU into an X, Y, Z. roll, pitch. and yaw format. This is

done by applying the calibration values which are stored in nonvolatile RAM to the measurements and

then computing the Cartesian coordinates through trigonometric conversions. The roll, pitch, and yaw

do not require coordinate conversions since they are measured directly. A scale factor stored in

nonvolat;.- RAM is still applied to convert the measured voltages into angles. Units for these

measurements an centimeters for X, Y, and Z and degrees for Roll, Pitch, and Yaw. Scaled values

are transmitted to maintain resolution. The current version of the software (1.0) scales all values by a

factor of 100 before transmitting them back to the PC.

FAME/AFOSR Hintz. March 29, 1992

16

3.5. Servo Outputs

In normal radio controlled operation, servos expect to receive their 1.0 to 2.0 ms signal pulse onc,. pc:

1600 sec. Although the interval does not have to be this long, they will malfunction with too ýThort

an interval. As there was not enough output compare to control all the servos, each output compar-

controls 1 pin PA and 1 pin PB.

Table IV Servo block connections.

OUTPUT COMPARE SERVO BLOCK PORT NUMBER MCU PIN SER•'i
NUMBER CONNECTOR NUMBER CONTROLLED

NUMBER

OC3 6 PA5 29 Colective

OC3 5 PB2 40 To Gyro

OC4 4 PA4 30 Rudder

OC4 3 PBl 41 Elevator

OC5 2 PA3 31 Aileron

OC5 1 PBO 42 Throttle

ICi 0 PA2 32 From Gyro

The servo connections are organized as shown in Table IV:

3.6 AID Input Block

The six potentiometers which measure the angles of the six joints are connected to the MCU through a

multi-connector block immediately behind the M68HC11EVB. As with the servo connections. the

wires ame numbhn• with the corresponding number on the block. Power is supplied to the A/D block

from the V, =i V,. of the M68HC1 IEVB. The A/D channels and connector block pin

assignments am as in the following table.

3.7. System Verification Software

A PC based program, FAMEPC.C, is provided which demonstrates the control capability available

FAME/AFOSR Hintm March 29. 1992
17

Table V A/D converter signal/pin assignments.

A/D A/D REGISTER PORT M68HCIIEVB AiD SIGNAL

CHANNEL NUMBER PIN NUMBER BLOCK

PIN

NUMBER

I ADR1 PEO 43 - Buffalo

2 ADR2 PEI 45 1 RoU(3Yj

3 ADR3 PE2 47 3 Yaw (3Z)

4 ADR4 PE3 49 5 Pitch "3XJ

5 ADRI PE4 44 0 A/i 2Z,

6 ADR2 PE5 46 2 E1(2X

7 ADR3 PE6 48 4 H (1Z)

8 ADR4 PE7 50 6

through the RS-232 interface to the MCU. Table VI PC keyboard controls.

Servo position values can be typed in directly in

milliseconds of control value (from 1.0 to 2.0
SERvo CONIROLUJ\

ms) or the individual servos increased or S-V LN'T_- LI tC

decreased by their smallest value through Throttle T c

pushing the upper case value of the controlling Tail Rotor R c
letter or the lower case letter respectively. The

controlling letters are shown in Table VI. Collective C0

Elevator E o

3.8& Calibration Aileron A c

In order to elimimae tedious alignment of

potentiometen at each joint, it was decided to

align the joints electrically rather than mechanically. That is, the exact position of the potentiometer is

not important as long as it can be corrected prior to its use in the conversion Cartesian coordinate

conversion. This is done by measuring the voltages produced at specified angles during a calibration

program and computing a zero and scale factor. These factors are stored in nonvolatile RAM. As

FAME/AFOSR Hinmz, March 29, 1992

18

long as the stand is not disassembled, there is no need to recalibrate since the correction va!uc ,

stored in nonvolatile storage which is retained even if power is removed.

The calibration program, FAMECAL.C, must be downloaded into the M68HCI IEVB and startcd v_

the Buffalo monitor. A terminal emulator must be connected through the port other than the one

which is connected to the workstation. Communications are at 9600 baud, no parity, one stop bit Ir

power is removed from the evaluation board, the program will be lost since part of it is loaded into

volatile RAM. This is not the case for FAMEMAIN since it all resides in non-volatile RAM.

3.9 DOF Range Limitation

There is a red colored round collar immediately below the platform which holds the helicopter. Th.ut

ring is fixed in position with screws. The collar is there to limit the range of motion in the roll. pitch,

and yaw axes during initial NN control program development. The total range of motion about these

axes is great enough with the red collar removed that the tail rotor and boom can strike the stand and

cause extensive damage to the helicopter. After some confidence is gained in the control algorithms

and its implementation, the red collar can be lowered by removing the two screws and drilling and

tapping new holes at a lower position. The tap size is 6-32.

An easier way to lower the collar is to compress the springs by tightening the bolts which hold the

two red rings together. The best alternative which will allow complete range of motion and yet not

require the removal of the platform/helicopter as detailed below is to remove the four bolts/springs

* which couple the two and then use shorter bolts/nuts to hold the two red rings together with no

distance between them.

Complete removal of the collar requires that the helicopter and platform be removed from the

supporting shaft. This could be done either of two ways. The recommended removal technique is to

disconnect all of the wires from the helicopter/platform to the servo and A/D blocks as well as the

motor power supplly. Slowly rotate the helicopter/platform counter clockwise (CCW) when viewed

* from above until the allen head bolt which limits the range of motion of the yaw axis makes contact

with the bracket at the bottom of the platform supporting shaft. Continue turning the platform with

steady CCW pressure until the threaded portion of the shaft disengages from the inverted joystick on

* FAMEJAFOSR Hintz, March 29. 1992
19

0I

the platform (the joystick measures roll and pitch angles). It will take several turns to remove the

platform from the supporting shaft. The washers are required between the shaft and the joystick to

compensate for the fact that the threads could not be machined completely to the flat fd.ce ot the ,',ta,

and it is the flat face of the shaft which must mate with the flat surface of the joystick to produce L2,1,:

rotational motion. The number of washers determines the zero yaw position of the helicopter. Some

washers must be present when reassembling the platform/shaft. Be sure to use Locktte on the fhrcad.

when reassembling and do not overtighten as there is a chance of stripping the threads in the

aluminum joystick (they are quite expensive) or shearing the threaded portion of the supporting ,haft

(which is custom made).

A less desirable alternative is to disconnect all wires as above and then unscrew the allen head cap

screw which connects the supporting shaft to the yaw axis potentiometer at the bottom of the shaft. If

the spring clip immediately above the allen head capscrew is then removed, the shaft should be able to

be pulled upwards through the two roller bearings, effectively removing the shaft, platform, and the

helicopter simultaneously. This method is not recommended as the alignment of the bearings is

critical for smooth operation about the yaw axis and, more importantly, the yaw axis potentiometer

must the be recalibrated both electrically and mechanically. Electrical alignment is required so that the

proper angle is measured by the A/D converter. Mechanical alignment is required to insure that the

allen head capscrew limits the range of motion about the yaw axis so that the potentiometer is not

destroyed. The potentiometer is not strong enough in rotation to stop the helicopter and a mechanical

stop must be used.

There is a second purpose for the red collar. A close inspection will reveal that one of the screw/nut

pairs through the springs is reversed which causes the nut to protrude slightly above the red ring. This

is done so that the helicopter platform has something to push against while the rotor speeds up and

before the tail rotor has reached an effective speed for controlling yaw. Once the helicopter is

hovering, the pltform does not make contact with the nut. The commercial speed controller which is

supplied does not have a slow ramp up and tends to jerk the main rotor even with minimal control

action. This too can cause the helicopter to yaw violently leading to the possibility of damage.

FAM,/AFOSR Hint, March 29, 1992
20

I

3.10 Connector Wiring

The standard connector for wir.-'g signals is the "Dean's" connector. This is a three pm connecter

p which we have used in the following standard. Table VII Signal description for 4-pin MCIoC\
One end of the connector is distinguished by a Tannecto Siing perito M cI EY

connector supplying power to MC68HCI ,E%'B

groove between two pints. Starting at this end,

the signals on the connector are: Signal, +5 Pin Signal] Color

Volts, ground. This is true for the PSnor

potentiometers used to measure the angles as I Ground Black

well as the servos. It is possible to connect 2 +5 Volts Brown

these connectors backwards in spite of the fact 3 -12 Volts Redk

that there is a different spacing between the 4 +_12 Volts Orange

signal and +5V pin. The notches must line up.

On connecting the Dean's connectors to the

servo and A/D block, note that the block has a white line which indicates the position of the groove in

the connector.

Exercise caution when wiring around the servo and A/D blocks which are epoxied to the stand behind

the MC68HCI 1EVB as the pins which protrude from the blocks (next to the connectors which are

plugged in) have +5 Volts and Ground on the lower two pins.

The system has been supplied with an 6-pin Molex connector through which power connections are

made to the system from the external motor power supply and the PC power supply. The voltages on

these pins are as listed in Table VII. Female pins are used on the power supply side and male pins

used on the stand side.

A four pin Molex connector is used to connect power to the MC68HCI IEVB. The voltages on these

pins are as Usted fn Table VlI.

4. Software Development

All of the MCU software was developed using a C cross-compiler/cross-assembler from INTROL

FAME/AFOSR Hintz. March 29. 1992

21i

corporation. If further development by the user is desired this, or a similar cross-compiler-cro-s-

assembler, needs to be purchased. All of the source code for both the PC a-d the MCU ts ava,ý,abic

on disk as well as listed in the appendices The emphasis was oi. C with only these ponons ot0

requiring the fastest processing c- unusual hardware control wntTen in assembly language

PC based software for the calibration program and sending/receiving of commands, requests, and

messages was developed using Borland Turbo C++, although no ++ enhancerrents were used and *hc

program was compiled with Turbo keywordz on so that PC specific I/O routines could be used.

4.1. Foreground/Background Software Design

The im'.ementation of the code is best understood with reference to a foreground/background

approach. Interruptable processes are run in the foreground with their execution and behavior

controlled by tokens which are either set in other processes or in the interrupt service routines. Some

tokens are hardware flags which are read to determine VY'eir TRUE/FALSE value. For example, the

serial communications interface (SCI) in the MCU is interrupt driven. Upon receipt of a character, the

intenrupt service routine (iSR) first checks to see if there are any errors (overrun or framing), then

checks for start character and/or command character, stores data characters and then compares the

locally generated checksum with the one transmitted. Only when all of these checks are complete in

the background ISR is a semaphore set which tells the foregrounC ?rocess that a complete message has

been received.

Hardware background processes are used extensively because they are readily available on the 6811

MCU. For example, the pulses sent to the s-rvos are controlled through the use of the output compare

(O0 registers in the MCU. These registers are loaded with a value. WMen the value in the OC

register matches that of the internal free-running counter (TCNT), an interrupt is generated. Since

there are only 5 OCs, three of them are used to drive two servos. The ISR for an OC determines

which servos pubm width has passed and clears it to zero before reloading the OC register with a value

that will tell it when to turn off the other servo which it controls. It must be emphasized that these

OCs are hardware compares which operate in the background and generate an interrupt when their

value matches that of the free-running counter. After both pulses are cleared to a low value, the array

of pulse widths is read to determine the duration of the low value and this is timed. After the low

FAMEIAFOSR Hlmtz, March 29, 1992

22

value interrupt occurs, a new round of high pulses is programmed. The OCs a:e loaded fron :he

arrays which store the values. It is the foreground process which, alter detecting a message received

semaphore, rcads the command message and stores the data in the arra' of pulse width duration

values. Since the actual PWs are generated in the background continually, the new pulse widths Irc

output as soon as they arrive. Output pulses are generated sequentially, the automatic bit Set r: -.,3

the OC was not used.

4.2. M68HC11EVB Buffalo Monitor

The Motorola supplied Buffalo is maintained intact in the evaluation board. Its limited repertoire S

still usable for unassembling or modifying the executable code. On restart, the MCU fetches the

address of the startup routine from locations SFFFE/FFFF. As delivered in the 68HCI IEVBU, this

points to the Buffalo monitor. In order to start in either Buffalo or FAME, the user must set jumper J-

4 to connect pins 2-3 rather than pins 1-2 for Buffalo. The Buffalo monitor reads this jumper to

determine which mode of operation is desired. For users without a PC, this allows using FAME

without always having to start up in the Buffalo monitor and then switch to FAME through the GO

command.

4.3. INTROL C Cross-Compiler/Cross-Assembler

To one familiar with Borland C++, the INTROL cross-compiler is a bit difficult to use. The error

messages are sometimes cryptic, and the linker command file (which controls the object module

linking process) is difficult to set up. To minimize confusion about the method of locating the ISRs

and their pointers during the linkLig process, the linker command file is listed in section 6.3,

Appendix III.

5. System Support

Questions conceeming FAME can be directed by email to khintz@fame gmu.edu. Very limited repair

parts are availae from GMU and the user is expected to become self-sufficient once delivery of

FAME is made. To assist in that end, the next section lists suppliers of the various components.

Dimensioned drawings of custom mechanical parts are available and included in the appendix.

FAMEJAFOSR Hintz. March 29, 1992

Also available for I week loan are two VHS video tapes which are a basic inirrduc:.;rc, mc, .,:ý

helicopter construction and flying. The two titles which we have from the Mil, V!deo Libr:ir%

"Model Helicopter Building and Flying Techniques", and "Advanced Helo Flight Course, Ir ,

and Advanced Techniques." Don't rush out and buy them, but they are worth borron ig trom j

5.1. Spare Parts (suppliers)

Ace R/C Inc.

116 W. 19th Street

P.O. Box 511

Higginsville, MO 64037

(816)584-7121

FAX (816)584-7766

Radio control electronic pans. Deans Connectors

4
Helicopter World, Inc.

521 Sinclair Frontage Road

Milpitas, CA 92035

(408)942-9521 4

FAX (408)942-9524

Kalt Whisper Helicopter

Flitemaster Junior Stand 4

Futaba G155 Gyros

Futaba S133 Servos

Miniature Aircaft USA

2324 N. Oranp fBom Trail

Orlando, FL 32U0-4896

(407)422-1531 4

X-Cell Gas Helicopters (not used in electric FAME)

FAME/AFOSR Hinmz, March 29, 1992 4

24

Motorola

Microprocessor Products Group

6501 William Cannon Drive West

Austin, Texas 78710

Design Kit, 68HC11EVB

Sterling Electronics

6304 Woodside Ct.

Columbia, MD

1-800-767-7176

Dallas Semiconductor 256 kbyte nonvolatile SRAM #DS 1230Y- 150ns

Digike; Corp

701 Brooks Avenue South

P. 0. Box 677

Thief River Falls, MN 56701-0677

1-800-344-4539

Molex Connectors #03-09-204 (4 pin plug), #03-09-1041 (4 pin receptacle)

ASC 60G-ND Socket Connector. 60 pin, gold

ASSR60-ND 60 pin strain reliefs

Introl Corporation

647 W. Virginia Street

Milwaukee, W153204

(414)276-2937

fax (414)276-7026

M68HCI I C cross-compiler and cross assembler

"ITM Inc.

6420-B Dobbin Dr.

Columbia, MD 21045

FAME/AFOSR Hintz. March 29. 1992
.25

(301)995-1331

Potentiometers, RV6NAYSD502A, Type W, 5kOhms, Linear Taper, single turn

5.2. Acknowledgements

Instrumental in the development of FAME have been Bertina Ho-Mock-Qai. a visiting research

scholar. Elsa Lam, a senior Electrical Engineering Student, and Darrell Duane, a graduate research

assistant in Electrical Engineering.

FAMEAFOSR Hinmz. March 29, 1992

26

6. Appendices

6.1. Appendix 1: MC68HCII C Source Code

This code is included for reference only. It is a fully functional, correctly operating program but does
not contain the latest updates. Please contact khintz@fame.gmu.edu for the most recent xcrsion 0i 1i~c
code.

/7 George Mason Univers;ty
/* Department of Elertrical and Computer Engineering

/* File name: FAMEDEF.h

/* Authors: Bertina Ho-Mock-Qai, Darrell Duane, Ken Hinrz
/* Update History: Version 1.0, February 23, 1992

1* Header file for FAME operating prograir in M68HCll
/*
/* --- ~----------------------

#ifndef FALSE
#define FALSE 0
#define TRUE !FALSE
#endif

/* -- ~----------------------------

masks used for bitwise operations on registers or variables

#define MASKO 0xFE /* 11i1 1110 *1
#define MASK1 0xFD /* 111 1101 */
#define MASK2 OxFB /* 111 1011 *1
#define MASK3 OxF7 /* lll 0111 */
#define MASK4 OxEF /* 1110 1111 */
#define MASK5 OxDF /* 1101 'Li1 l /
#define MASK6 OxBF /* 1011 1111 */
#define MASK7 Ox7F /* 0111 111 */

#define CMASKO -MASKO /* 0000 0001 */
#define CMASK1 -MASKI /* 0000 0010 */
#define CMASK2 -MASK2 /* 0000 0100 */
#define CMASK3 -MASK3 /* 0000 1000 */
#define CMASK4 ~MASK4 /* 0001 0000 *1
#define CMASK5 -MASK5 /* 0010 0000 */
#define CMASK6 -MASK6 /* 0100 0000 */
#define COG8= -MASK7 /* 1000 0000 */

#define ICI N 0 /* number of input capture 1 */
#define IC2-NUM 1 /* number of input capture 2 */
#define IC3-NUM 2 /* number of input capture 3 */
#define OC1--NUM 0 /* number of OC capture 1 */
#define OC2 -NUM 1 /* number of OC capture 1 */
#define OC3TNUM 2 /I number of OC capture 1
#define OC4 NUM 3 /* number of OC capture 1 */
#define OC5-NUM 4 /* number of OC capture 1
#define PA3 3 /* pin number on port A

FAME/AFOSR Hin. Mauch 29.1992

#define PA4 4 /* pin number on port A
4define PA5 5 1/ pin number on port A
#define PA6 6 /* pin number on port A
#define PBO 0 /* pin number on port A
#define PBl I /* pin number on oort A
#define PB2 2 /" p1n n.r er .n part A

#define A LOW 0 /* indicates status of serv
#define AHIGH 1
#define B LOW 2
#define B-HIGH 3

#detine PI 3.14159265359 /1 value for pi "/
#define RADIANS TO DEGREES ((double)'80/(double)P?) *zonvcersizn
#define ANGLE TX SCALE FACTOR 100 /* scale for tx angle integers
#define POSITIONTXSCALEFACTOR 100 /* scale for tx pos integers

#define ANGLE 1z0 0 /I calibration location " for pot !z
#define ANGLE izl (PI)
#define ANGLE 2x0 0
#define ANGLE 2xl (-PiOverFour)
#define ANGLE_2z0 0
#define ANGLE 2zl (PiOverTwo)
#define ANGLE_3pitch0 0
#define ANGLE 3pitchl N/A /* this value prompted for from user "i
#define ANGLE 3rollO 0
#define ANGLE 3rolll N/A /* this value prompted for from user *1
#define ANGLE 3yaw0 0
#define ANGLE 3yawl (PiOverTwo)
#define ATODERRORLIMIT 10 /* sum of max differences in four A/D samples

/* --- -----------------
/* defines for initializing RAM ISR jump table
1* --------------- ------------------------------------- -----------------
#define JUMPEXTENDED Wx7E /*Assembly language inst. for ISR Jump tazle*
#define VSCI OxOOC4 /* Serial Communications Interface
#define VSPI 0XO0C7 /* Serial Peripheral Interface
#define VPAIE OXOOCA /* Pulse Accumulator
#define VPAO OXOOCD /*
#d=fine VT7F OXOODO /* Timer Overflow
#c- ine V- 0X00D3 /* Output Compare 5
#c.efine V .: 0X00D6 /* Output Compare 4
#define V:-,3 OXOOD9 /* Output Compare 3
#define VTOC2 OXOODC /* Output Compare 2
#define VTOC1 OXOODF /* Output Compare 1
#define VTIC3 OXOOE2 /* Input Capture 3
#define VTIC2 OXOOE5 /* Input Capture 2
#def..-e VTICI OX0OE8 /* Input Capture 1
#def..ne VRTI OXO0EB /* Real Time Interrupt
#define VIRQ OXOEE /* Maskable Interrupt Request
#define VXXhQ 0X00FI /* Non-Maskable Interrupt Request
#define VSWX OXOOF4 /* Software Interrupt
#define VILLOP OXOOF7 /* Illegal Operation
#define VCOP OXOOFA /* Computer Operating Properly
#define VCLM OXOOFD /*
#define VRST $EOO0 /* Restart Buffalo Monitor using assembly -

FAMEIAFOSR Hina. March 29.1992

28

/* Definit.cns f:r Handshaking

/* Disable TX data buffer empty interrupt
#define DisableTXbuffEmptyint() C!earBit(SCCR2 Add, 7)
/* Enable TX data buffer empty interrupt
#define EnableTXbuffEmptylnt() SetBit(SCCR2_Add, 7)
/* Disable TX complete interrupt
#define DisableTXcompletelnt() ClearBit(SCCR2_Add, 6)
/* Enable TX complete interrupt
#Uefine EnableTXcomplete:.,t(L -ctBitSCCR2_Add, 6
/* Disable RX start interrupt
#define DisableRXint() ClearBit(SCCR2_Add,5)
/* Enable RX start interrupt
*define EnableRXint() SetBit(SCCR2_Add,5)
/* Disable idle line interrupt
#define Disableldlelnt() ClearBit(SCCR2_Add,4)
/* Enable idle line interrupt
#define EnableIdleInt() SetBit(SCCR2_Add,4)

#define START CHAR (unsigned char) 'S' /*Ox53 upper zase S
#define STOPCHAR (unsigned char) 's' /×Cx73 1.ower case s

/* Command Char RXed by HCl1 that initiates calc. & TX of posit. vaaiues '

#define POS_REQCOMCHAR (unsigned char) 'R'
/* Command Char RXed by HClI that preceeds servo control values
#define SER__REQ_COM CHAR 'C'
/* Command Char TXed by HC1I that preceeds position values *
#define POS ACK COM CHAR 'P'
/* Command dhar-TXed by HC11 that ack receipt of servo control values f

#define SER ACK COM CHAR 'A'1* Command n-ot yet implemented*/
#define BADREQCOMCHAR 'x'

#define START CHAR INDEX 0
#define COMCHARINDEX 1

/* 12 position bytes = 6 values + 4 handshaking chars
#define POS ACK STRING LENGTH 16
/* 1 start char, 1 command char, & 1 stop char
#define SER ACK STRING LENGTH 3
/* 1 start char, I command char, & 1 stop char
#define POS REQ STRING-LENGTH 3
/* 10 servo conTrol bytes - 5 values + 4 handshaking chars
#define SERREQ_STRING_LENGTH 14

/* number of points (0 included) of position data
#define POS ACK DATA ONLY 11
/* number of poInts 70 included) of servo control data
#define SERREQ DATAONLY 9

#define X MSD 2 /* index of pos reply chars in string from mcu to pc:
#define X LSB 3
#define Y-MSB 4
#define Y--_LSB 5
#define ZMSB 6
#define Z LSB 7
#define ROLL MSB 8
#define ROLLLSB 9

FAME/AFOSR Hintz. March 29. 1992
29

#define PITCHMSB 1-0
*define PITCH-LSB 11
#define YAW MSB 12
#define YAWLSB 13

#define THROTTLE MSB 2 /* Index cf se o " -
#define THROTTLELSB 3 ,/ in string from pc to
#define AILERON MSB 4
#define AILERONLS• 5
#define ELEVATOR MSB 6
#define ELEVATOR LSB 7
#define RUDDER MSB 8
#define RUDDER-LSB 9
#define COLLECTIVE MSB 10
#define COLLECTIVE-LSB 11

/* index variables */
unsigned char TXindex; /* index of char to be TXed in the b-ff-
unsigned char RXindex; /* number of chars which have been rece-ved

/* TX Buffers for HC1l, RX Buffers for PC
/* position values ack TX buffer
unsigned char PosAckBuff[POS ACK STRINGLENGTH);
/* servo control ack TX buffer
unsigned char SerAckBuff[SERACKSTRINGLENGTH];

/* RX Buffers for HC1l, TX Buffers for PC
/* Buffer of position request
unsigned char PosReqBuff[POSREQSTRINGLENGTH];
/* Buffer of received Data
unsigned char SerReqBuff[SERREQ_STRING_LENGTH];
unsigned char WorkSCSR; /* status register of the SCr
unsigned char WorkRXdata; /* received data register
unsigned char WorkCommandChar; /* Command character RXed from PC
unsigned char ValidCommandChar; /* Most recent valid command rx'ci
unsigned char BadStopChar; /* char rx'd in place of stop

/* Sephamores
/* TRUE if there is Noise,Framing error or an Overrun error
unsigned char NoiseFraming;
unsigned char Overrun;
/* TRUE if an unknown command char is RXed
unsigned char UnknownCommandl;
unsigned char UnknownCorunand2;
unsigned char NoStopChar;
unsigned char CheckSumBad; /* rx'd bad checksum
unsigned char IndexError; /* Indexing Error
unsigned char RXstream; /* TRUE implies that a sequence is being RXed *
/* TRUE when a TX should take place
unsigned char AckWanted - FALSE;
unsigned char OC3triggered;
unsigned char OC4triggered;
unsigned char OC~triggered;

1*---
Byte operation variables used to concatenate and cut bytes

/*---
unsigned char LSBits;
unsigned char MSBits; /* LSbits or MSbits to concat or results */

unsigned int Int To Split;
unsigned int Concat_2B;

FAME/AFOSR Hinm Mach 29,1992

30

unsigned char PosOrSer = BAD_REQ_COM_CHAR: /* Temp toi ?nks~m an ally

/*--.-- -

.* VARIABLES VEFINIT:3..

1*---

#define RX RANK 2 /* Rank of the 1C used for Receiver
#define RX-NUM (RX RANK+l) /* Number of the !C used for Receiver
#define APM CHAN RANK 2 /* rank of the pulse that gives one AiM
define NUM-IC 3- / number of input captures in one 4:1L
#define NUM_PULSE 8 /* Number of channels to read in a 5naL

/* the synchronization pulse is not Lno_-es*
#define TCNT MAX VAL OxFFFF /* Maximum value of the main 16 ti; i=er
#define OVERFLOW-MAXVAL OxFF/* Maximum value of the 8 bit overflow

/* software counter (see type definition)
#define SET PIN TRUE /* used by to determine next state of output pin
#define CLEARPIN FALSE /* ditto */

/* 2 mhz, 500 ns per clock cycle of timer, so 2000 clock cycles - 1 vs
#define ONE MS 2000 /* min acceptable time between two RX rising edges '

#define ONE POINT TWO MS 2400
#define ONE-POINT-THRAE MS 2600
#define ONE POINT FIVE MS 3000 /* Servo Midpoint
#define ONE POINT SEVEN MS 3400
#define ONEPOINT EIGHT MS 3600
#define TWO MS 4010 /7 max acceptable time between two RX rising edges Q
#define SOFTWARECORRECTION 0 /* compensates for instruction

execution time before clearing pulse
number of 500 ns ticks to subtract -

Ndefine INTERPULSEDURATION 4000 /* arbitrary delay between individual
servo pulses

#define THROTTLE LOWERLIMIT ONE MS /* should get green light
#define THROTTLE UPPER LIMIT TWOMS /* should get red light
#define AILERON _OWER LIMIT ONE MS
#define AILERONUPPER LIMIT TWO MS
#define ELEVATOR LOWER LIMIT ONE MS
#define ELEVATOR UPPER LIMIT TWOMS
#define RUDDER LOWER LIMIT ONE MS
#define RUDDER-UPPER-LIMIT TWO-MS
#define COLLECTIVE LOWER LIMIT ONE POINT TWO MS /* controls bind
#define COLLECTIVEUPPER_-LIMIT ONEPOINTSEVENMS /* controls bind

/* default servo values for initialization
#define THROTTLE DEFAULT THROTTLE LOWER LIMIT
#define ELEVATOR DEFAULT ONEPOINT FIVE MS
#define AILERON DEFAULT ONE POINT-FIVE MS
#define RUDDER DEFAULT ONEPOINT FIVE MS
#define TO GTRODEFAULT ONEPOINT-FIVE-MS
#define COLLECTIVE DEFAULT COLLECTIVE LOWERLIMIT

#define NUM PA 8 /* number of pins in port A Q
#define NUM PB 8 /* number of pins in port B
#define NUM--OC 7 /* number of output compares of HC" 1
-define MAX-SERVOLABEL 5 /* what is largest number of servo */

/* labels are for indices into arrays and match servo assignments on rx *'
/* these numbers are also the numbers on the servo output block
#define FROMGYRO 0 /* input from gyro */

FAME/AFOSR Hintz. March 29, 1992

31

Kdefine THROTTLE 1 /* store throttle control value in ?5's azr.y p -

#define AILERON 2 /* store aileron control value in PA's array p L
#define ELEVATOR 3 /* store elevator control value in PB's array ;:r
Kdefine RUDDER 4 /* store rudder control value in PA's array pss 4
#define TO GYRO 5 /* 1.5 ms pulse always to gyro
#define COLLECTIVE 6 /* store pitch contrcl value in PA's array p:s

1'---------------------------------- ---------------------------------------.
6811 Evaluation Board Hardware Definitions

It--
#define LATCH_SCI Ox4000 /I address of flipflop to enable P.X f aa

It---
Stand hardware definitions

i e ---
#define LENGTH ARM2 64 /I length of lower arm in centimeters
#define LENGTHARM2 94 1* length of elevation arm in centimecers
/I pot number match A/D block numbers but do not match Port E pin n~rzerw
#define AZ POT 0 /* PE 4 */
#define ROLL POT 1 /* PE 1 */
#define ELPOT 2 /* PE 5 */
#define YAW POT 3 /* PE 2 */
Kdefine H POT 4 /* PE 6 */
#define PITCH POT 5 /* PE 3 */
#define SHOW CAL VALUE 6 /* used by FAMECAL.C to show cal values
#define QUITVALUE 8 /* used by FAMECAL.C to auit
#define EDITCALVALUE 7 /* used by FAMECAL.C to edit cal values /

S-------------------------- TYPE DEFINITION -----------------------------
1*--
/* TimeMemo: type associated to each input capture function IC

/* Time[2]: used to store two consecutive values of the IC register
It ie time of capture of 2 consecutive edge

/* OverflowCount: software 8 bit counter to count the number of main
It timer overflows that has occur between the capture of two
/* consecutive edges by a given input capture pin

typedef structI
unsigned int Time(2];
unsigned char OverflowCount; /* software overflow counter */
I TimeMemo;

TimeMemo IC(NUM IC];/* Counter overflow & array to save time for each IC !

/* Values of the receiver channels belonging to the same frame
unsigned int PW RX[NUMPULSE];
unsigned int BUFFRX[NUMPULSE]; /* Buffer to store the received values /
/* --

VARIABLES RELATIVE TO THE RECEIVER INPUT
I* ---
/* PWtempo: When two successive edge have been detected by the Input */
/* Capture number (i) the time betweenn them is computed and"!
/* and stored in PWtempo~i-1]
It --- ~-------------------1
unsigned int PWtempo[NUMIC]; /* array of PWtempo for each input capture"!
unsigned char PWRead[NUMPULSE]; /* PW Read(i] indicates if channel(i) "

/* has been already read
unsigned char Synch; /* Set when the system is synchronized /

FAME/AFOSR Hintz March 29, 1992
32

,/ t e re:eiver s
unsigned char RXFirsctnter; /I Set when capture c rx si:gna- n.a

/' Cleared when first edge Is aefe::ez a::ez
/" capture has beer enab:e' aga-n

1. unsigned char RXRead; /* Set to ! if a full frame nas ceer. :eas

VARIABLES RELATIVE TO THE OUTPUT COMPARE FUNCTI:3NS

/* Generates signal on a Port A pin & a Port B pin using cnezou;.
/* compare.
/* arrays are larger than necessary so that output block nl-urrters can -e

* /* used as indices.
1*..
unsigned int ThighPA[NLM PA+1];
unsigned int ThighPB[NUMPB+1]; /- Buffer to store time high for earn zin,
unsigned int AIndex;
unsigned int BIndex;
unsigned int ServoStatus[NUMOC]; /* remembers which servo is active

/* MC)HCI REGISTER VARIABLES
/*--
unsigned int *TCNT-Add: /* main timer counter register
unsigned char *TMSK2 Add; /* main timer interrupt mask
unsigned char *TFLG2_Add; /* maintimer flag register

0 unsigned int *ICAddENUM IC]; /* pointer to input capture registers.
unsigned int *OCAdd[NUM0OC]; /* pointer to output compare registers

unsigned char *TMSKI Add; /* output compare and input capture int masks'*
unsigned char *TFLGI Add; /* output compare and input capture flags "/
unsigned char *TCTL2-Add;
unsigned char *TCTLI Add;

• unsigned char *OCID Add;
unsigned char *OClMAdd; /* Output 1 control
unsigned char *PACTLAdd;

/* ---------------------------- SCI REGISTERS ------------------.. . --------
unsigned char *SCSR Add; /* status register of the SCI:flags
unsigned char *SCDR-Add; /* received and transmit data register */

Sunsigned char *SCCR2 Add; /* interrupt enables and state of SC -
unsigned char *SCCR1 Add; /* data format 8 or 9 bits
unsigned char *BAUD Add; /* baud rate register
unsigned char *LATCH_SCI Add; /* software controllable latch to connect

pin PDO to I/O connector f/

/*--- Port A & B registers: for sending pulses using output compare -----
* unsigned char *PORTSAdd;

unsigned char *PORTA Add;

/* -------------------------- Port D registers --------------------------- *

unsigned char *PORTD Add; /* Port D
unsigned char *DDRD Add; /* Data Direction for Port D
unsigned char *SPCRAdd; /* SPI Control Register

/* .-------------.--------- EEPROM programming registers -------- ---------
unsigned char *PPROG Add; /* HC1i registers
unsigned char *CONFIG_Add;

/ .------- /--- ----------------------

* FAME/AFOSR Hintz. March 29. 1992

33

0

A/D CONVERSION

double PiOverTwo; /* compute the constant f-r - e se
double PiOverFour; /* compute the constant focr aes:z se
unsigned char *OPTION Add; /x HCII registers
unsigned char *ADCTL Add; /* Control Register for A.T czr'erner
unsigned char *ADRI Add; /* oc where converted values are stc:ez
unsigned char *ADR2 Add;
unsigned char *ADR3 Add;
unsigned char *ADR4_Add;

/* Bit patterns written to ADCTL to trigger AID converters
#define PE0to3_ADCTL OxlO /* Scan-off, Multiple channel,

Convert Port E channels C :nzzg. 3
#define PE4to7_ADCTL 0x14 /I Scan-off, Multiple channel,

Convert Port Z channels 4 through 7

#define PEO ADCTL WxO0 /* Value to load ADCTL with to measure pin ?Z:
#define PEI ADCTL 0x01 /* Value to load ADCTL with to measure pin PEI
#define PE2 ADCTL 0x02 /* Value to load ADCTL with to measure pin PE2
#define PE3-ADCTL 0x03 /* Value to load ADCTL with to measure pin PE3 .
#define PE4-ADCTL 0x04 /* Value to load ADCTL with to measure pin PE4
Kdefine PE5-ADCTL 0x05 /* Value to load ADCTL with to measure pin PE5 S :
#define PE6 ADCTL OxO6 /* Value to load ADCTL with to measure pin PE6
#define PE7_ADCTL 0x07 /* Value to load ADCTL with to measure pin PE7 1/

/* ----------------------------- ---
/* variables relative to the position determination *7
/* ---------------- --- ------------
/* Stand potentiometer angles used to determine the Cartesisn location *7
double anglelz;
double angle2z;
double angle2x;

/* Potentiometer angles used to determine the rotational location
double angle3pitch;
double angle3roll;
double angle3yaw;

/* First voltage from AD converter
unsigned char V3pitch0;
unsigned char V3roll0;
unsigned char V3yawO;
unsigned char V2zO;
unsigned char V2xO;
unsigned char VIz0;

/* Second Voltage from AD converter *1
unsigned char V3pitchl;
unsigned cHa V3rolll;
unsigned char V3yawl;
unsigned char V2zl;
unsigned char V2xl;
unsigned char Vlzl;

#define DLY10 0x4E40 /* delay of 10 ms in term of main timer cycle */

/* Global variables used to cut DoubleToSplit into 4 unsigned char "'
unsigned char Byte0;
unsigned char Bytel;

FAME/AFOSR HintL March 29. 1992

34

unsigned char Byte2;
unsigned char Byte3;
double DoubleToSplit;

/* Cartesian position of the Helicopter
int Xcord;
int Ycord;
int Zcord;

/w rotational position of the Helicopter
int Roll;
int Pitch:

* int Yaw;

/* constants relative to coordinate conversion and scaling fýDr
double RadiansToDegrees;
double AngleTxScaleFactor;
double PositionTxScaleFactor;

/* --- I.----------------------
/* variables for retrieving calibration values from the EEPFOM
/*---
/* EEPROM Slope values
double *Slopelz_Add;
double *Slope2zAdd;
double *Slope2xAdd;
double *Slope3pitch Add;
double *Slope3roll_Add;
double *Slope3yaw_Add;

/* EEPROM DC offset voltage values
unsigned char *VlzOAdd;
unsigned char *V2x0-Add;
unsigned char *V2zO0Add;
unsigned char *V3pitchOAdd;
unsigned char *V3rollO Add;
unsigned char *V3yawOAdd;

/* EEPROM addresses of calibration values for potentiometers
#define SLOPElz ADDRESS Ox7fll
#define VlzADDRESS Ox7f1S

#define SLOPE2x ADDRESS 0x7f21
#define V2xADDRESS 0x7f25

#define SLOPE2z ADDRESS 0x7f31
#define V2zADDRESS 0x7f35

* #define SLOPE3pitch ADDRESS 0x7f41
#define V3pitchADD-RESS 0x7f45

#define SLOP33roll ADDRESS 0x7f51
#define V3rOll ADDRESS 0x7f55

#define SLOPE3yaw ADDRESS 0x7f61
* #define V3yawADDRESS 0x7f65

• FAMEIAFOSR Hintz. March 29. 1992

35

0e

/* Declaration of the Hll register addresses defined in t'e litzary
/* c:\introl\kjh\kjhstart.oll
/*-------------------~-~---
extern unsigned char HIlPORTA; /* i/o port A
extern unsigned char HilPIOC; /* parallel i/o regi-tr
extern unsigned char HllPORTC; /* i/o port C
extern unsigned char HlIPORTB; /* i/o port B
extern unsigned char HIIPORTCI; /N alternate latch port C
extern unsigned char HIIDDRC; /* data direction for port C
extern unsigned char HIIPORTD; /* i/o port D
extern unsigned char Hl1DDRD; /* i/o data direction for port D
extern unsigned char HllPORTE; /* i/o port D
extern unsigned char HIICFORC; /* compare force register
extern unsigned char HIlOCIM; /* OCI action mask regiszer
extern unsigned char HIlOC!D; V* OCl action data register

extern unsigned int HlITCNT; /* timer counter register
extern unsigned int HIlTICI; /* input capture register "
extern unsigned int HllT7C2; Q* input oapture register 2
extern unsigned int HlITIC3; /* incut capture regisvir 3
extern unsigned int HIlTOCI; /, output compare register !.
extern unsigned int H!ITOC2; /* output compare register 2
extern unsigned int Hl1TOC3; /* output compare register 3
extern unsigned At H1ITOC4; /* output compare register 4
extern unsigned int H1lTOC5; /* output compare register 5

extern unsigned char H1lTCTL1; /* timer control register 1
extern unsigned char H1ITCTL2; /* timer control register 2
extern unsigned char HIITMSK1; /* main timer interrupt mask 1
extern unsigned char HllTFLG1; /* main timer interrupt flag i
extern unsigned char HllTMSK2; /* main timer interrupt mask 2
extern unsigned char H1lTFLG2; V* misc timer interrupt flag 2
extern unsigned char H11PACTL: /* pulse acc control register
extern unsigned char HIIPACNT; /* pulse acc count register
extern unsigned char H1lSPCR; /* SPI control register *

extern unsigned char H11SPSR; /* SPI status register
extern unsigned char Hl1SPDR; /* SPI data in/out
extern unsigned char HIIBAUD; /* SCI baud rate control
extern unsigned char H11SCCRl; /* SCI control register "
extern unsignd char HI1SCCR2; V* SCI control register 2 *

extern unsiAged char H11SCSR; /V SCI status register
extern unsigned char HIISCDR; /Q SCI data
extern unsi3qmd char H11ADCTL; /* A to D control register *
extern unsigned char HIIADRI; /* A to D result 1
extern unsigned char H1lADR2; /* A to D result 2
extern unsigned char H1IADR3; /* A to D result 3
extern unsigned char H11ADR4; /V A to D resull 4 *
extern unsigned char HllOPTION; /* System configuration options
extern unsigned char HIICOPRST; /* arm /reset COPtimer circutry
extern unsigned char H11PPROG; /* EEPROM programming control.
extern unsigned char Hl1HPRIO; /V highest priority I bit and misc*

FAMEIAFOSR Hin March 29. 1992

36

extern unsigned char H-7! N:T; . A-

"C:32, Rý:M, &;EEpRcm ena-Ies -
extern unsigned char H

. . .

PROTOTYPES
/..........

/* functions for measuring pots and calculating positions an= ar -e-ý
void InitADconverter(void);
void MeasureAngles(void);
void PositionDetermination(void);

/* functions used for both TX & RX
void SCI_ SR(void); /* ISR for transmission or reception over 3C:
unsigned char Checksum(int maxnum, unsigned char CheckArray'J);

/* Transmission / Acknowlegement prototypes
void SCI init TX(void); /* initializes TX to PC
void SCI-TX ISR(void); /* ISR that transr.lits position values to PC -
void TXfirst(void);
void FillPosAckBuff(void);
void FillSerAckBuff(void);
void Split Int(int i); /* function that calls asm function below '/

void split_int(void); /* assy lang to prepare pos values for TX to PC *'

/* Reception of Position value requests & servo control requests
void SCI init RX(void); /* initialize for reception over SCI
void SCI RX ISR(void); /* ISR that receives and stores characters
void ReinitializeReceive(void);
void SaveReg(void); /* reads RX buffers & saves values to work registers "
void RXerror(void);
void CharRX(void);
void CompleteRXstream(void); /* verify that checksum is valid & store

servo control data in array
/* function to call asm routine below
int ConcatInt(unsigned char MSbits,unsigned char LSbits):
/* asm routine for concatenating servo control values
void concat int(void);
void ClearWorkVar(void);

/* Servo Control Prototypes
void InitOC(int OCnum, int Enable);
void DecoueAndStoreServoString(void);
void InitServos(void);
void SendPuleePA PS(int OCnum, int PAnum, int PBnum);
void OC3_ISR(void);
void OC4_ISR(void);
void 0C5 ISR(void);

void InitOverflow(void); /* enables ISR below
void TCNTOverflow(void); /* ISR counts number counter overflows

/* functions for doing basic bit operations on register settings
void InitializeConstantVariables(void);
void InitializeVectorTable(void);

SFAME/AFOSR Hintz. March 29, 1992

37

void lnitPointer (vzld);
void ClearBit (unsigned char oier.rt uii
void ClearFlag(unsigned char c~-tr~ NuzmEý,::
void Set~it (unsigned char or:~. ~i~
unsigned char GetBit~unsigned z~ar pr.ern: E2t
unsigned char Get Bit-Char (;s I gned :nar eirt -3:

FAMEIAFOSR Hinmz March 29. 1992

38

. .t~~~~ .t.c .~x . .-.......

1* George MasonrU. 'ers:/
1* Department Eoef tricainCs:er En;ree:.

/* File Name: FAMEmain. C

/ Authors: Bertina Ho-Mock-Qai, DarreU. Zuane, Ken r4n=z
/* Update History: Version 1.0, February 23, 1992

1* *** indicates functions and their prototypes

S--- -indicates ISRs

#include "c:\introl\kjh\KJHSTDIO.h"
#include "c: \int rol\include\MATH.h"
#include "c:\introlkdd8kFAMECEF.H"
#include "c:\introl\dd8\FAMEL:3.c"
#include "c:\introl\dd8\FAMEINIT.c"
#include "c:\introl\dd8\FAMEISR.c"

/* resets receive indices and initializes rx interrupts
/ t* *** *** *~t* *** ***~ *t W *** *t~~t* ~ *t ttt~ttt t~tt.. .. t.........

void ReinitializeReceive(void)

RXindex = 0; /* reset index "/
RXstream = FALSE;
EnableRXinto; /* Enable RX interrupts */
CheckSumBad - FALSE;

/* Function to initialize the different reception variables

void ClearWorkVar(void)

int i;

WorkCormandChar-0;
/* clear servo control request buffer
for(i - 0; i < SERREQSTRINGLENGTH; i++)

SerReqBuff[i] 0;

/* clear entire position value request buffer
for(i - 0; i < POSREQ_STRINGLENGTH; i++)

PosReqBuf (ij-0;

FAMEIAFOSR Hintz, March 29. 1992
39

0

/* Func-ýz.n cal~ez:i w- 3 zze3srzz-z:-ec-.eri2<
/* verifies che:~r :rrec:_, yes zal -a-s
/* servo contro s are z :cce a e z
1* only called w~~ser- ere z as e

::id Dcd~dtr~r::g:A

unsigned int LocalUL:

C. -,ableRXint() ;
L,-aslUI - ConcatInt(SerReq8uffrTIHCTT-LE_:MSB),

SerReqBuff[THROTTLZ LSB11);
if((LocalrJI >- THROTTýLE LO1-WER LI'MIT)
&&(LocalUI <- THROTTLE UPPERLIMIT.))

ThighPB(THROTTLE] = LocalUI;

LocaitJI = Concat Int(SerReqBufflAIýLE-RCNMSBJ,4
SerReqsuff AILERON LSBfl;

.f ((Loca!LJI >- AILERON :_'1ZR_L1IMIT)
&&(Loca-UI <- AILERON- .:ER- LIMIT))

ThighPAW LE_7RONI LocalU 1

LocaltJI = C-oncat Int(SerReqBuffEELEVATORMSBJ,
SerReqBuff ELELVATORLSB]);

if ((LocalVI >- ELEVATOR LOWER LIMIT)
&& (LocalUl <= ELEVATORUPPERLIMIT))

ThighPB(ELEVATOR] - LocalUI;

LocalUI ConcatInt(SerReqBuff(RUDDERMSB],
SerReqBuff(RUDDERLSBI);

if ((LocalUI >= RUDDER LOWER LIMIT)
&& (LocalUl <= RUDDERUPPERLIMIT))

ThighPACRUDDER] = LocalUI;

LocalUI - ConcatInt.(SerReqBuffECOLLECTIVE -MSB],
SerReqBufffCOLLECTIVE LSBJ);4

if ((LocalUI >- COLLECTIVELOWER LIMIT)
&&(LocalUI <- COLLECTIVEUPPER LIMIT))

ThighPAECOLLECTIVE] - LocalUI;

dnitializeReceiveo;
*end function Complete RX stream *

4PFAME/AFOSR Hintz. March 29, 19924

/* F'unctionl called after a complete position request sequence is receL.ea,
/* It triggers the A/D converters to sample the potentiometers angies,
/* and fills the TX buffer with the measured values.

void Fill~osAckBuff(void)

MeasureAngles U; /* trigger A/D cony., & measure all angles
PositionDeterminationU);
PosAckBuff[STARTCHARINDEX] = START CHAR;
PosAckBuff[COM CHAR INDEX] = POS ACK COM CHAR:
PosAckBuff[POS-ACK STRING LENGTH - 11 = STOPCHAR; -

SplitInt(Xcord); /* send X cartesian coordinate of helicopter is -
PosAckBuffEX MSB] - MSBits;
PosAckBuff[XLSB] - LSBits;

SplitInt(Ycord); /* send Y cartesian coordinate of helicopter us PC
PosAckBuff[Y_MSB] = MSBits;
PosAckBuff[Y_LSB] = LSBits;

SplitInt(Zcord); /* send Z cartesian coordinate of helicopter ti PC
PosAckBuff[Z MSB] - MSBits;
PosAckBuff(ZLSB] = LSBits;

SplitInt(Roll); /* send roll to PC
PosAckBuff[ROLL MSB] - MSBits;
PosAckBuff[ROLLLSB] - LSBits;

SplitInt(Pitch); /* send pitch to PC
PosAckBuff[PITCHMSB] - MSBits;
PosAckBuff[PITCHLSB] = LSBits;

Split Int(Yaw); /* Send yaw to PC
PosAckBuff(YAW MSB] = MSBits;
PosAckBuff[YAW LSB] = LSBits;

/* Calculate checksum */
PosAckBuff[POS ACK STRING LENGTH - 2]

= Checksum(POSACKSTRINGLENGTH, PosAckBuff);

/* Calcuiates X,Y,Z positional & rotational coordinates using the
/* values read from the A/D converters which measure the potentiometers.*,
/* double precision numbers from positions are scaled before converting */
/* to integer before transmission. The position scale factor can be fou'
/* in FAMEDEF.h as POSITION TXSCALEFACTOR.
/* The same goes for angles-except they are converted to degrees also an*/
/* their scaling factor is ANGLE TX SCALE FACTOR.

void PositionDtermination(void)

*[
double d;

d - (double)LENGTH ARM1 * cos(anglelz)
+ (double)LENGTH ARM2 * cos(anglelz + angle2z) * cos(angle2x);

Xcord - (int) (PositionTxScaleFactor * d);

FAME/AFOSR Hinm Much 29,1992
41

0

d = (doubl.e) LENGTH ARM2. *Sin(anglel.z)
+ (double)LENGTHARMN2 *(sin(anglelz ang-le2zn)

Ycord -(int) (PositionTxScaleFactor * d);
d = (double)LENGTH.ARM2 *sin(angle2x);
Zcord - (int) Posi~tionTxScaleFactor*d)
Pitch -(min)(RadiansroDegrees AngleTxScaleFactor*
Roll =(int) RadiansToDegrees AngleTxScaleFactor*
Yaw = (nt) (RadiansToDegrees (angle3yaw + ang-leiz ang~e2z)

* AngleTxScaleFactor);
/* end function Positionoetermination ~

/* Function that calculates the angles measured by the pzctentiz:nre-ers
/* Measure values of A/D converters for cartesian location ca-'o.

void MeasureAngles (void)

/* convert voltages measured on pins PE4 through PE7
*ADCTL Add - PE4to7 ADCTL;
while(G~etBit(ADCTLAdd,7)==O); /* wait for -conversion ztc zor,.)ýete .

/* Calibration of thFe cartesian angle values using the -EEPRCM ce~f-i~en7:
anglelz - ((double)*SlopelzAdd *

(double) ((int) *A!R3 Add - (int) *VlzOAdd))
angle2x - ((double)*Slope2xAdd *

(double) ((int)*AD5R2 -Add - (int)*v2xOAdd))
angle2z - ((double)*Slope2z Add*

(double) ((int)*A5RlAdd - (int)*V2zOAdd))

ADCTL Add-PEOto3_ADCTL; 1 convert voltages measured on pins PEO
throughS PE3 */
whilefGetBit(ADCTLAdd,7)--O); /* wait for conversion to complete *

/* Calibration of t-he rotational angle values using the EEPROM coefficients
angle3pitch - ((double)*Slope3pitch Add *(double) (int)*ADR4_Add

(int)*V3pitchO -Add));
angle3roll - (double)*Slope~rollAdd *(double) ((int)*ADR2_Add

-(int)*V3rollOAdd));
angle3yaw - ((double) *Slope3yaw Add * (double) ((min)*ADR3_Add

-(int)*V3yawOAdd));
I/* end of function ConvertAD ~

/* TXes the first char of the TX buffer, which spawns the TX of the rest ~
/* of the buffer. /

void TX first (void)

TXindex - 0;
*SCSR Add - *SCSR Add; /* TDRE flag cleared after function writes to T:R
switch (Valid~cuauandChar)

case FOS REQCOM _CHAR:
*SCDR Add - PosAck~uff[TXindexJ;

/* Write to the TDR & clear TDRE flag *
Enable~xbuffEmptylnto; /* enable transmit complete interrupt

macro *
break;

case SERREQCOM CHAR:

FAME/AFOSR Hinm March 29.,1992
42

*SCDRAdd = SerAckBuffKTXindex):
/* Write tj the TDR & clear T:RE flag I/

EnableTXbuffErmptyrnt(; /I enable trans~mt complete
macro */

break;

default:
printf("Attempt to TX unknown type in :Xfirst-(r"):
oreak;

I /- end switchf) */
/* The next value that should be sent by the ISR wil l'nave an inex

/* end TXfirst */

/* Main function to receive a character according to the control wcrd
/* the corresponding functions are called, 2 possible sequences can te
/* received "position sequence" and the "servo control sequence"

void CharRX (void)

if(RXindex == STARTCHARINDEX) /* Determine command, start only rx'c -;

RXindex++;
WorkCommandChar - WorkRXdata; /* WCC used for further character routing"i
switch(WorkCommandChar)

case POS REQ COM CHAR: /* is this a position request? */
PosReqBuffTRXiFdex] - WorkRXdata; /* Store command char f/

break;
case SER REQ COM CHAR: /* is this servo control request? */

SerReqBuffTRXindex] - WorkRXdata; /* Store command char for Checksum
break;

default: /* is this an unknown request? */
UnknownCommandl - TRUE;
RXindex - 0;
RXstream = FALSE;
break;

I /* end switch() for command character "/
/* end if this is the command character */

else /* any character other than the start char or command char */f
RXindex++;
switch(WorkComnmandChar)

case POSREQ_COM_CHAR: /* is this a position request (no data)? '/
if((RXindex -- (COM_CHARINDEX+1))

&& (WorkRXdata -- STOPCHAR)) /* is this the stop char? */

ValidCoumandChar - WorkCommandChar;
Ackwanted-TRUE; /* set sephamore to trigger acknowledgement to PC
I /* disable rx inter */

else /* error */
printf("No stop character in position request \r");
ReinitializeReceive();
break;

case SERREQ_COMCHAR: /* is this servo control sequence (need data)? */
if((RXindex > COM CHAR INDEX)

&&(RXindex < (SER_-EQ_STRINGLENGTH - 1))) /* All but stop char*/

SerReqBufftRXindex] - WorkRXdata;

FAMEIAFOSR HinMarch 29, 1992

43

I /* save servo control or checksum values to this array
else if(RXindex == SERREQSTRINGLENGTH - .) /* RX:NEX - :

if(WorkRXdata == STOPCHAR) /1 is it the stop char? "/

SerReqBuff[RXindex] = WorkRXdata;
if(SerReqBuff[SER REQ STRING LENGTH - 2j

== Checksum(SER_REQ STRING LENGTH, SerReaBuff))
{/ and checksum CK

ValidCommandChar = WorkCommandChar;
AckWanted - TRUE; /* Let foreground kncw new c:z.anaI

else

CheckSumBad = TRUE;
ReinitializeReceive);

NoStopChar - FALSE;
) /* disable RX while TXing ack */

else /* error */

NoStopChar-TRUE;
BadStopChar - WorkRXdata;
ReinitializeReceive();

/*else*/ /* indexing error */
/*{

IndexError-TRUE;
NoStopChar - FALSE;
ReinitializeReceive();
}*/

break;

default: /* is this an unknown request? */
UnknownCommand2 = TRUE;
ReinitializeReceive);
break;
I /* end switch() */
/* end else this is not the Command Char */

/* end of function CharRX */

/* Main 68EVB FAME program/***,*** /
int main()

asm("disint SZI\n"); /* disable global interrupt of HCII ''
InitializeCoastantVariables();
InitializeVfctorTable(); /* init ISR jump table in RAM
InitPointert); /* Initialize values of pointers to HCll registers "
InitServos(; /* initialize durations for high & low values

output compares (servo control)
InitADconverter(; /* initialize OPTION register for A/D converters
ClearWorkVaro; /* Initialize the communication buffers
InitOC(OC3_NUM, TRUE); /* initialize Output Compare #3 set time-0,

clear flag, enable interrupt
InitOC(OC4 NUM, FALSE);/* ditto for #4, no enable
InitOC(OC5MNUM, FALSE);/* ditto for #5, no enable

FAME/AFOSR Hinm March 29, 1992

44

SCI initTX ./ . t: i a IIze -.-e SC: ran smr--.:e r
SCl.init RX; /* initialize the SC: receiver
asrn('inter CLI\n'); /* enable global interruztpl of ý!Cl:
while(TRUE) /* endless loop awaiting :SRs &serra=r:rres ~

* ~if (Overrun)

overrun=FALSE;
printf ("Overrun\r");

if (NoiseFraming)

* NoiseFraming=FALSE;
printf ("Noise/Framing\r");

if (UnknownCornmandl)

UinknownCommandl=FALSE;
printf("tUnknown Command I Char RXed from PC\r");

if (tnknownComrnand2)

UnknowriComrnand2 -FALSE;
priritf("Unknown Command 2 Char RXed from PC\r"');

if (NoStopChar)

0 NoStopChar-FALSE;
printf('Character RXed where stop char expected not a sto;p ca.'
printf('Character RXed instead %c \r", BadStopChar);

if (IndexError)

IndexError-FALSE;
printf ("Index Error\r");

if (OC3triggered)

OC3t riggered-FALSE;

if (OC4triggered)

OC4t riggered-F'ALSE;

if (OC5triggered)

OC5t rigge red-FALSE;

* if(AckWanted)

putchar(I'&'); /*(int)0x4l); A ~
putchar('!'); /*(int)0x2l); ! *
AckWanted - FALSE; /* Reset Semaphore *
switch (ValidCornmandChar)

case POSREQCOMCHAR: / Set Sephamore to TX Position Values Request
Acknowledgement 7/

FillPosAckBuffo; /* Fill, the TX buffer with the position values '
TXfirst 0;
ReinitializeReceive o;
break;

* ~FAMEIAFOSR Him~ March 29, 1992
45

case SER REQ CION CjAa: f * Se: Sepnarnore zi -x
Acknowledgement ~

DecodeAndStoreServoStri;ng()
FillSerAckBuff(); /* Fill ?tIe TX buffer with- -ez~-~r
TXfirst 0;
ReinitializeReceive 0;
break;

default:
printf ("Invalid Acknowlegement type requested.'\rfl);
ReinitializeD~eceive 0;
break;
1/* end switch *
/* end if AckWanted ~
/* while true ~

1/* main routine ~

FAMEIAFOSR Hintz, March 29. 1992
46

George Mason University
/* Department of Electrlcal and Cz-.puzer Enginee~:ng

/* File Name: FAMEINIT.C

/* Authors: Bertina Ho-Mock-Qai, Zarrei. Duane, Ken Hin-z
/* Update History: Version 1.0, February 23, -992
/*

/* Initializes some constants so that they do not have to ze copuer
/* repeatedly during program execution

void InitializeConstantVariables (void)

PiOverTwo PI / 2.0;
PiOverFour - P1 / 4.0;
RadiansToDegrees = RADIANS TO DEGREES;
AngleTxScaleFactor = ANGLE TX SCALE FACTOR; /* scaled integers are senz-.
PositionTxScaleFactor - POSITIONTXSCALLFACTOR;

/* Not Complete, add vectors as needed

void InitializeVectorTable(void)

unsigned char *TempPointer;

/* Vector to SCI ISR */
TempPointer = (unsigned char *)VSCI;
*TempPointer = (unsigned char) JUMPEXTENDED;
*(TempPointer + 1) -

(unsigned char) ((OxffOO & ((unsigned int) (&SCIISR))) >> 3):
*(TempPointer + 2) =

(unsigned char) (OxOOff & ((unsigned int) (&SCIISR)));

/* Vector to OC3 ISR */
TempPointer = (unsigned char *)VTOC3;
*TempPointer - (unsigned char) JUMPEXTENDED;
*(TempPointer + 1) -

(unsigned char) ((OxffOO & ((unsigned int) (&0C3_ISR))) >>);
*(TempPointer + 2) -

(unsigned char) (OxOOff & (unsigned int) (&OC3_ISR) ;
/* Vector to 0C4 ISR */

TempPoint.: - (unsigned char *)VTOC4;
*TempPointer - (unsigned char) JUMPEXTENDED;
*(TempPointer + 1) -

(unsigned char) ((OxffOO & ((unsigned int) (&OC4_ISR)) >> 8);
*(TempPointer + 2) -

(unsigned char) (OxOOff & (unsigned int) (&OC4_ISR) ;

/* Vector to OC5 ISR */
TempPointer = (unsigned char *)VTOC5;
*TempPointer - (unsigned char) JUMPEXTENDED;

FAME/AFOSR Hirn March 29.1992

47

*(TempPointer + 1) =
(unsigned char) ((Cxff 00 & ((unsignOe .nO Ci2C :SF.

*(TempPointer + 2) =
(unsigned char) (x000ff & (unsigned int (;025 :$?J

/* Function assumes that the OC that we used is not CC!
(OC does not work as the other OC cf HCI!. manual)

/* Number passed is the output compare number less one

void InitOC(int OCnum, int Enable)

OC Add[OCnum] - OxOOO; / set output compare timer indexes 7: zer:
/* set register so that nothing is done to A's pin upon nex: n
ClearBit (TCTLlAdd, (9 - (2 * OCnum)));
ClearBit (TCTLlAdd, (8 - (2 * C~num) ;
ClearFlag(TFLG1_Add, (8- (OCnum + i))); /* clear interrupt flag fZr LCx
ServoStatus[OCnum] - B LOW;

if(Enable)
f
SetBit(TMSKlAdd,(8- (OCnum + I))); /* enable interrupt for CCx "/

Initialize the HCl1 flags, baud rate...to enable the reception
/* must be called once before using the SCI transmission features

void SCI•initTX(void)

SetBit(SCCR2 Add,3); /* Enable transmission TE-l /
DisableTXbuffEmptylnt(); /* sable TX data buffer empty interrupt */
DisableTXcompleteInto; /* Disable TX complete interrupt */

I*** ***

Initialize the HCll flags, baud rate... to enable the reception
1* must be called once before using the SCI reception features

void SCI init RX(void)

LATCH_SCI _Add - 0x01; / enable SCI on HClI board by setting flip fCtp*,.
AckWanted - FALSE;
Overrun - FALSE;
NoiseFrAma - FALSE;
UnknownCoxwsad - FALSE;
UnknownCoisand2 - FALSE;
NoStopChar - FALSE;
IndexError - FALSE;
RXstream - FALSE;

/* baud-4800 assuming 8 MHz clock */
SetBit(BAUD Add, 4);
SetBit(BAUDAdd, 5);

FAMEIAFOSR Hintz, Mach 29. 1992
48

Set~it(BAUD Add, 0);
ClearBit(BAUDAdd, 1);
ClearBit(BAUDAdd, 2);

ClearBit(SCCR1_Add,4); /I format of the datas 's
ClearBit(SCCRIAdd, 3);

SetBit(SCCR2 Add,2); /I Enable RX RE=1 */
ClearBit(SCCR2_Add,4); /I Disable Idle Lin-e :.terurp- En.a.Le

ReinitializeReceive();
/* end function SCI init RX */

/* Initialize the time low for all Output Compares (set to ims mini=mm)
/* Initialize the time high for them as well */

void InitServos(void)

int i;

for(i - 0; i <= NUMPA; i++)

ThighPA[i] = (unsigned int)ONE MS;
I /* Set Sephamore to indicate that Port A is low */

for(i - 0; i <= NUMPB; i++)

ThighPB(i] - (unsigned int)ONE MS;
I /* set Sephamore to indicate that Port B is low */

/* set specific values for particular servo controls */
ThighPB [THROTTLE] = (unsigned int)THROTTLE DEFAULT;
ThighPA [AILERON] = (unsigned int)AILERON DEFAULT:
ThighPB (ELEVATOR] = (unsigned int)ELEVATOR DEFAULT;
ThighPA [RUDDER] - (unsigned int)RUDDER DEFAULT;
ThighPB [TO GYRO] = (unsigned int)TO GYRO DEFAULT;
ThighPA [COLLECTIVE] W (unsigned int)COLLECTVE_ DEFAULT;

TCTL1 Add - OxOO; / OC2,3,4,5 set register OC disconnected from outputs "/
TFLG1-Add - 0; / clear all pending IC and OC interrupts I/
PORTA-Add - 0; / set all servo outputs to zero •,
*PORTB-Add - 0;
OClM Add - OxOO; / disable OCI (default) */

/* eBd initialize high & low times for servo control */

/* Initialization of the HCl1 registers to use the ADconverter

void InitADconverter(void)

SetBit(OPTION Add,7); /* ADPDU-l */
ClearBit(OPTION Add,6); /* CSEL-0 */
SetBit(OPTION_Add,4); /* DLY-I */

FAME/AFOSR Hinm March 29. 1992

49

/'* This routine makes the pointer variables recresenz:in; :.-e
/* coint to the corresponding a-ddressc-

void I-nit-Pointer(void)

TCNT Add = &HllTCNT; 1* Main Timer count register ~
TMSK2f Acdd= &MIlTMSK2; /* interrupt mask for timer cpera:i.ns ~
TFLG2_Add = &HllTFLG2; /* Flag Register for timer operat-crns

IC AddEIC1_NUM] -&HIITICl; /* Array of the 3 Input Caot.;re e.ses
IC-Add[IC2-NUM] &H1IITIC2;
IC-AddEIC3-NUM] &H12.TIc3:

TMSK1 -Add -&H~lTMSKI; /* IC & C mask register ~
TFLG1 -Add -&Hl1TFLGI; i* IC & CC flag register /
TCTL2_Add - &H11TCTL2; /* ?? */

OC Add(OClNUM] = &H11TOCl; /* Array of the 5 Output Compare regic--ers
OC-Add(0C2_NUMI -&HllTOC2;
OC-Add[OC3_NtJM] = &HllTOC3;
OCAdd[0C4_NUM] =&HllTOC4;
OC-Add(0C5_NUM] - &HllTOCS;

TCTL1 Add -&HllTCTLI1 /* Timer Control Register #1: for OCS C25
OClDAdd - &HllOClD; /* Data for OCi 1
0dlM7Add -&Hl1OC1M; /* Mask for OCI ~
PACTE-Add. = &HllPACTL; /* Pulse Accumulator Control register ~

SCSR Add = &HllSCSR; 1* SCI registers *
SCDR_.Add. &IHllSCDR;
SCCR2 Add -&HllSCCR2;
SCCRl Add -&HllSCCR1;
BAUD Add -&HllBAtJD;
LATCHSCIAdd - (unsigned char *)LATCHSCI; '~Latch to enable the 5,- ZRX

/* This latch is software controllable and must be initialized ~
PORTB -Add - &HllPORTB; I. communication ports ~
PORTA-Add -&HllPORTA;
OPTIONAdd - &HllOPTION; 1* AD Converter control registers ~
ADCTL Add - &HllADCTL;
ADRiAdd - &HllADRl; 1* AD converter reg that hold the converted valnes

ADR2 Add - &HllADR2;
ADR3 Add - &HllADR3;
ADR4_Add - &HllADR4;

/* Calibrated values of the potentiameters programmed in the EZ-:PAOM
Slopelz Add - (double *)SLOPElz ADDRESS;
Slope2z -Add - (double *)SLOPE2z -ADDRESS;
Slope2x Add - (double *)SLOPE2xjADDRESS;
VizO Ad~d - (unsigned char *)Vlz ADDRESS;
V2zO Add - (unsigned char *)V2z ADDRESS;
V2xO -Add -(unsigned char *)v2x ADDRESS;
Slope3pitch Add - (double *)SLOVE3pjtch ADDRESS;
Slope3roll Add - (double *)SLOPE3roll ADDRESS;
Slope3yaw Add - (double *)SLOPE3yawADDRESS;
v3pitchO Add - (unsigned char *)v3pit-ch ADDRESS;
V3rollOKdd - (unsigned char *)v3rollAVODRESS;

FAME/AFOSR Hintz, March 29, 1992

50

V3yawO0Add = (unsigned char *)V3yaw_ADDRESS;

FAMEIAFOSR Hintz. March 29, 1992

51

/' George Mason 'n~versiv
/t Department of Electrioa. and . e
/* File Name: FAMEISR.c
'/ ,

Authors: Bertina Ho-Mcck-Qai, sarrell eae n z
" Update History: Verslon 2.., 3ezrarv 2, -392

/* ISR for OC3, OC4, 0C5
/* 1SR triggered when value in OC3's register - timer va!.e

void OC3_ISR(void)

switch (ServoStatus[OC3_NUM])

case B LOW:
1
ServoStatus[OC3_NUM] = AHIGH;
/* set -:tput compare to new value
"*OCAd- :3_NUM] = *TCNT Add +ThighPACCLLEC._

-- SOFTWARE CORRECTION;
SetBitwJORTA Add,PA5); /? set Port A Bit
ClearFlag (TFLGIAdd, (7 - OC3_NUM)); /* clear int flag
SetBit(TMSKIAdd, (7 - OC3_NUM)); /* enable interrcpt for 2Cx2
break;

case A HIGH:

/* autc clear does not seem to work correctly
ClearBit(PORTA Add,PA5); /* cLEAR Port A Bit
ServoStatus[OC3 NUM] = A LOW;
"*OCAdd(OC3_NUMI - *TCNT-Add + INTER PULSEDURATION

- SOFTWARE CORRECTION; ; /* delta pulses
ClearFlag (TFLGIAdd, (7 - 0f3 NUM) 1; /* clear int flag
SetBit(TMSKlAdd, (7 - OC3_NUM)); /* enable interrupt for OCx
break;

case ALOW:
f
ServoStatus[OC3_NUM] - BHIGH;
/- set output compare to new value
*OC Add[OC3 NUM] - *TCNT Add + Thi:hPB(TOGYRO] - SOFTWAREOCRR-C:CN;'
Setgit(PORTB Add,PB2); /* sý-: ý-ort B Bit *
ClearFlag (TFLG _Add, (7 - OC3 .-UM)); /* clear int flag
SetBit(TMSKlAdd,(7 - OC3_NUM)--; /* enable interrupt for CCx
break;
I

case BHIGH:I
ClearBit(PORTB Add,PB2); /* set Clear Port B BitClearFlag (TFLG1 Add, (7 - 003_NUM)); /* clear int flag

/*disable OC3 interrupt
ClearBit(TMSKl Add, (7 - OC3 NUM)); /* disable interrupt for -C-1
ServoStatus[OC3 NUM] = B LOW;

/* load OC4 timer for short-interpulse duration
*OCAdd(OC4_NUM] - *-CNT Add + INTER PULSEDURATION

'OFTWARECORRECTION;

FAMEAFOSR Hina- March 29. 1992

52

enable int for 44 ncw so it has a chance w utheui ce-ng.-
ServoStatus[CC4 NUMIj = B LOW;
ClearFlag (TFLGI Add, (7 -C4 ... NM /I cear _.t f"
SetBit(TMSKlAdd, (7 - OC4_NUM)) / enale •nterr-F :r r::
break;

asm(" RTI\n"); j- asm :=rnand: Return frz. e

/* ISR triggered when value in OC4's register = tiner vau.;e
1*---~

void OC4_ISR(void) /* ISR triggered when 0C4's register = : '7er

switch (ServoStatus[OC4_NUM])I
case BLOW:I

ServoStatus[OC4_NUM] = AHIGH;
/* set output compare to new value
*OCAdd[OC4_NUM] - *TCNT Add + ThighPA[RUDDER]

- SOFTWARE CORRECTION;
SetBit(PORTAAdd,PA4); /T set Port A Bit
ClearFlag (TFLGlAdd, (7 - OC4_NUM)); /* clear int flag
SetBit(TMSKl_Add, (7 - OC4_NUM)); /* enable interrupt for OCx
break;
I

case AHIGH:
{
/* auto clear does not seem to work correctly
ClearBit(PORTA Add,PA4); /I set Port A Bit
ServoStatus[OCTNUM] = A LOW;
*OCAdd[OC4_NUM] = *TCNTAdd + INTERPULSE DURATION

- SOFTWARE CORRECTION; /* between pulses
ClearFlag (TFLG1_Add, (7 - O04_NUM 3); /- clear int flag
SetBit (TMSKIAdd, (7 - OC4_NUM)); /* enable interrupt for OCx
break;

case ALOW:

ServoStatus(OC4 NUM] - BHIGH;
/* set output compare to new value
*OCAdd(OC4 NUM] - *TCNT Add + ThighPB(ELEVATOR]

- SOFTWARE CORRECTION;
SetBit(PORTB Add,PBl); /7 set Port A Bit *1
ClearFlag (fFLG1IAdd, (7 - OC4_NUM)); /* clear int flag */
SetBit(TMSK1Add,(7 - OC4_NUM)); /* enable interrupt for OCx
break;I

case BHIGH:

ClearBit(PORTBAdd,PBl); /* set Clear Port B Bit
ClearFlag (TFLG1_Add, (7 - OC4_NUM 3); /* clear int flag

/*disable OC4 interrupt
ClearBit(TMSKl_Add, (7 - OC4 NUM / 3; /* disable interrupt for 0C4 r
ServoStatus[OC4 NUM] - B LOW;

/* load OC5 timer for short interpulse duration
*OC-Add[OC5_NUM) - *TCNTAdd + INTERPULSEDURATION

FAMEIAFOSR Hin March 29. 1992

- SOFTWARE CORRECTC.N;
/* enable int for #5

ServoStatus(OCSNUM] - BLOW;
ClearFlag (TFLG1 Add, (7 - OC5 NUM I ; /* clear int flag
SetBit(TMSK1_Add, (7 - OC5_NUM)-); /* enable interr;pt fzr 2Cx 4
break;

asm(" RTI\n"); /* asm cozrinand: .Return frointerr:

* --.
/* ISR triggered when value in OC5's register = timer value
1* --
void OC5_ISR(void) /* ISR triggered when OC5's register =:3-e

switch (ServoStatus[OC5_NUM])

case BLOW:
f
ServoStatus(OC5_NUM] - A HIGH;
/* set output compare to new value
* OCAdd[OC5_NUM] = *TCNT Add + ThighPA[AILERON]

- SOFTWARE CORRECTION;
SetBit(PORTAAdd,PA3); /7 set Port A Bit
ClearFlag (TFLG1 Add, (7 - OC5_NUM)); /* clear int flag
SetBit(TMSK1_Add,(7 - OC5_NUM)); /* enable interrupt for CCx '

break;I
case AHIGH:I

ClearBit(PORTA Add,PA3); /* set Port A Bit
ServoStatus[OC NUM] = A LOW;
*•OCAdd(OC5_NUM] - *TCNT Add + INTERPULSEDURATION

- SOFTWARE CORRECTION; /* INTER PULSE
ClearFlag (TFLG1 Add, (7 - OC5_NUM)); /* clear int flag
SetBit(TMSKl_Add,(7 - OC5_NUM)); /* enable interrupt for OCx
break;

case ALOW:I
ServoStatus(OC5 NUM] - BHIGA;
/* set output compare to new value
*•OC Add[OC5_NUM] - *TCNTAdd + ThighPB(THROTTLE] - SOFTWARECORRECT::N;
SetBit(PORTBAdd,PB0); /* set Port A Bit
ClearFlag (TFLG1 Add, (7 - OC5 NUM)); /* clear int flag
SetBit(TMSK1IAdd, (7 - OC5_NUM)--; /* enable interrupt for OCx
break;I

case B_HII:

ClearBit(PORTB Add,PBO); /* set Clear Port B Bit
ClearFlag (TFLGI Add, (7 - OC5NUM)); /* clear int flag

/*disable 0C5 interrupt
ClearBit(TMSK1 Add, (7 - OCS NUM)); /* disable interrupt for 0C5 I/

1* *OCAdd[OC5_-UM] - *TCNT_Add;*/ /* set output compare to new value
*/

ServoStatus[OC5_NUM] - B LOW;
/* load OC3 timer so that only one roll over is used before next pulses /

FAME/AFOSR Hin March 29.1992

54

"*OCAdd[CC3 NUMj = TCN: Acid; .' set . z::mare set
/w enable int for #3

ServoStatus[OC3 NUM] = B LOW;
ClearFlag (TFLGIAdd, (7 - 0C3 ..UM i ; iea az
SetBit(TMSKIAdd, (7 - OC3_N!jM)-); / enable n.:err--- f'• C.
break;

asm(" RTI\n"); /* asm command: Return from in.terrupt

}*..
/* ISR for data received or transmitted via the SC'. As there is z,/n
/* physical interrupt for the SCI, function checks to see which aztL.i::v
/* is occuring according to the flags and calls the corresponaingr

void SCI_ SR(void)

if((*SCSR Add & Ox2E) != OxOO) /* was this !SR triggered by 4 char :.Xet*
SCI_ PX SRKO;

else
if(((*SCSR Add & 0x80) != Ox0O)

/* was this ISR triggered by TDRE=l (the TX data register empty)
SCI TX ISR(); /* transmit acknowledgement values to PC *

else

printf("SCI ISR triggered for reasons unknown. SCSR= Oxx S*CR^= 2xx
• SCSR Add, *SCCR2 Add);

DisableTXb-uffEmptyInc(T;

asm(" RTIkn"); /* asm command Return From Interrupt
) /* end SC--ISR */

/* Main ISR to transmit characters to the work station.
/* Transmits second through last characters of string.
/* Sending of first character done by TXfirst
/* ---
void SCITXISR(void)

TXindex++;
switch(ValidCommandChar)

case POS REQ COMCHAR:
*SCSR Add = *SCSR Add; /* Flag TDRE is cleared
SCDR-Add - PosAckBuff[TXindex]; / normal transmission
if(TXindex >- (POSACKSTRINGLENGTH - 1)) /* last char of sequence -/

DisableTXbuffEmptylnt();

break;
case SER RZQ COM CHAR:

SCSR Aad -- SCSR Add; / Flag TDRE is cleared
SCDR Add - SerAckBuff(TXindex]; / normal transmission
if(TXindex >- (SERACKSTRINGLENGTH - l))/* last char of sequence ,

DisableTXbuffEmptyInt(0;

break;
default:

FAMEýAFOSR Hinm March 29,1992

55

printf("Unknown type of request for TX ins TX :sR<) r"
break;
/* end switch()

1 /* end ISR to TX

/--
ISR for RX

/* ------------------ --
void SCI RXISR(void)

SaveRego; /* Read SCDR & SCSR -- > clear RDRF bit
#ifdef TESTO
putchar((int)WorkRXdata);

#endif
RXerroro; /* Check for Reception Errors
if((Overrun == FALSE)

&& (NoiseFraming = FALSE)) /* we are NOT presently rxing a string-?

if((WorkRXdata -- START CHAR)
&&(RXstream -- FALSE)) /* and the first character is the start char -

I
RXstream = TRUE; /*set the rxing stream semaphore
RXindex = START CHARINDEX;

/* start char is NOT put into string buffer *

else if (RXstream -- TRUE)I
CharRX(); /* in string, after start char, store character

else
RXstream - FALSE;

FAME/AFOSR Him March 29, 1992

56

George Mason University
* Department of Electrical and Computer Englneer1n-

/* File Name: FAMELIB.C

/* Authors: Bertina Ho-Mock-Qai, Darrell Duane, Ken Hntz
"/* Update History: Version 1.0, February 23, 1992

/* Function called after a complete servo command sequence is reee.
1* transmits 'SAs'

void FillSerAckBuff(void)

SerAckBuff[START CHAR INDEX] - START CHAR;
SerAckBuff[COM CHAR INDEX] = SER ACK 0CM_'H.?AR;
SerAckBuff[SER ACKSTRINGLENGTH - 1] = STOPCHAR;

Checks for overrun, framing, noise error

void RXerror(void)

Overrun = FALSE;
NoiseFraming = FALSE;
if((GetBitChar(WorkSCSR,1) =O)

I (GetBitChar(WorkSC5R,2)!-0))

NoiseFraming - TRUE;

if(GetBitChar(WorkSCSR,3) != 0)

Overrun=TRUE;

/* end of function RXerror() */

/* Save the SCI receive buffer and the flag register of the 301I
/* It is the first operation performed when a RX interrupt occurs

void SaveReg(void) /* This function clears the RDRF flag of the SCSR

WorkRXdata - *SCDR Add;
WorkSCSR - *ScSR Add;
WorkRXdata - *SCDRAdd; /* to clear interrupt
asm("int2 CLI\n"); /* enable interrupt to allow OCs to operate */

FAME/AFOSR Hinz. March 29. 1992

57

/ * *t~~tS W~t *t*****t *ttt~t ** *t~ W*......ttt * .. ~...fI

/* Concatenates 2 characters RXed into an Integer vale

int ConcatInt(unsigned char MSbits,unsigned cnar 2bits)

MSBits - MSbits;
LSBits - LSbits;
concat into; /* assembly language routine in file concat.sl!
return Concat_2B;

This routine clears to 0 a given bit of a givjen byte.
This byte is pointed to by pointer

void ClearBit(unsigned char *pointer,int NumBit)

switch(NumBit)
I
case 0: *pointer = *pointer & MASKO;

break;
case 1: *pointer = *pointer & MASK1;

break;
case 2: *pointer - *pointer & MASK2;

break;
case 3: *pointer - *pointer & MASK3;

break;
case 4: *pointer - *pointer & MASK4;

break;
case 5: *pointer - *pointer & MASKS;

break;
case 6: *pointer - *pointer & MASK6;

break;
case 7: *pointer - *pointer & MASK7;

break;

/

/* This routine clears to 0 a bit of a given flag register (TFLGI or
/* TFLG2). To do so, a 1 must be written to the bit to be cleared.
/* (see HCll manual) It was verified that the assembly language
/* translation of this function uses the BCLR instruction as prescr-ze1 "/:
/* in section 10.2.4 of the reference manual

void ClearFlag(unsigned char *pointer,int NumBit)

switch (Nu=it)

case 0: *pointer - CMASKO;
break;

case 1: *pointer - CMASKI;
break;

case 2: *pointer - CMASK2;
break;

case 3: *pointer - CMASK3;

FAME/AFOSR Hinm March 29,1992
58

break;
case 4: *pointer = CMA.SK4;

break;
case 5: *pointer = CMASK5;

break;
case 6: *pointer - CMASK6;

break;
case 7: *pointer = CMASK7;

break;

/* This routine sets to I a given bit of a given byte.
This byte is pointed to by a pointer.

void SetBit(unsigned char *pointer,int NumBit)

switch (NumBit)

case 0: *pointer = *pointer CMASKO;
break;

case 1: *pointer = *pointer CMASK1;
break;

case 2: 'pointer = *pointer I CMASK2;
break;

case 3: *pointer = *pointer I CMASK3;
break;

case 4: 'pointer = *pointer CMASK4;
break;

case 5: *pointer = *pointer I CMASK5;
break;

case 6: *pointer = *pointer CMASK6;
break;

case 7: 'pointer = *pointer I CMASK7;
break;

default: printf("Invalid Request to change bit =%d",NumBit);

I* This routine -1fows to test the value of a given bit of a byte.
This byte ia pointed to by pointer. '/I ** ******* * * *w* *..* .*' /

unsigned char GetBit(unsigned char *pointer, int NumBit)

unsigned char BitResult;

switch (NumBit)

case 0: BitResult-(*pointer & CMASK0);
break;

case 1: BitResult-(*pointer & CMASKI);
break;

case 2: BitResult=(*pointer & CMASK2);
break;

case 3: BitResult-(*pointer & CMASK3);

FAMEIAFOSR Hintz, March 29, 1992

59

break;
case 4: BitResult=(*pointer & CMASK4);

break;
case 5: BitResult-(*pointer & CXASKS);

break;
case 6: BitResult-(*pointer & OSvASK6);

break;
case 1: BitResult=(*pointer & CMASK7);

break;

return (BitResult);

This routine allows to test the value of a given bl , a zv,:e.

unsigned char GetBitChar(unsigned char reg,int NurnBitl

unsigned char BitResult;

switch (NumBit)

case 0: BitResult-(reg & CMASKO);
break;

case 1: BitResult-(reg & CMASKl);
break;

case 2: BitResult-(reg & CMASK2);
break,

case 3: BitResult=(reg & CMASK3);
break;

case 4: BitResult-(reg & CMASK4);
break;

case 5: BitResult=(reg & CMASKS);
break;

case 6: BitResult-(reg & CMASK6);
break;

case 7: BitResult=(reg & CMASK7);
break;

return (BitResult);

/* Cuts an integer into 2 bytes & returns the values in MSbits and LB:~

void SplitInt(int Data ToSplit)

Int 'To Split - Data To_Split;
spli~t'i~nt;

FAME/AFOSR Hinmz March 29. 1992

60

This function calculates the checksum of sequenzes
/* ignores 0th, last, and (last - 1) elements of array
"/* i.e., it ignores the start, checksum, and stop characters

unsigned char Checksum(int stringlength, unsigned char CheckArray[•)

unsigned chat ChecksumResult - 0;
unsigned int sum = 0;
int i;

for(i 1 1; i < stringlength - 2; i++)
sum = sum + CheckArrayfi];

ChecksumResult - (unsigned char) sum;
return ChecksumResult;

/* end checksum function "/

FAMEMAFOSR Hin March 29. 1992

61

6.2. Appendix II: MC68HCll Assembly Source Code

* Function to split an integer int-a 2 bytes MSB3.s
--

import MSBits * Most significant byte result
import LSBits * Least significant byte resultz
import IntToSplit * Integer to split

section .text

split int:
ldaa IntToSplit
staa MSBits
Idaa IntTo Split+l
staa LSBits
rts
end

* Function that concats 2 bytes into a 16 bit integer
--

import MSBits * most significant bits of the integer
import LSBits * Least significant bits of the integer
import Concat_2B * result of the concatenation

section .text

concat int:
ldaa MSBits
staa Concat 2B
idaa LSBits
staa Concat_2B+l
rts
end

FAMEIAFOSR Hin March 29. 1992
62

0

6.3. Appendix HI: Linker Command File

/* ---

/* File: fame32-3.ldO /" vers-l. 0
* /-

C..o.nfiguration is a Mctcrcla MC68HC 1EV3 eva>uatn a
/* This is designed fcr programs that are used WITH the
/* JBUFFALO monitor. The executable code and initialized tS

placed in an 8Kx8 RA-M at OxCOOC.

* /* Modification history:
/V KJH: for 32kbyte SRA-M 1/29/92
It --- --------- --------- ----------- -- ----------- --------- --------- ------

set H11AM = Ox00; /* page containing case cae
set H1IREG = 0x0l; /* page contain ng

Sset H11VECSIZE = 42; /* size of 68HC11 vectors
set HllRAMREG = (H!IRAM<<4) HllREG;/*mask for setting 81:;N:Z In s.ar...
set H11REGORG = (HIIREG<<12) /* origin of 68HCll registers
set H11VECORG = OxIO000-HI!VECSIZE; /* origin of 68HCll vectors

section .base bss origin 0 maxsize = 0x34 = .base; /* uninitialized base pace
storage *1
section .textl origin 0x1800 maxsize (0x4000 - 0x1800) = .text;
section .text2 origin Ox6000 maxsize = 8192 .text;

section .bss bss origin endof (.text2) bss comms;I* followed by unin-i
storage*/
section .data origin endof (.bss); /* followed by data
section .const origin endof(.data); /* followed by constants
section .strings origin endof(.const); /* followed by strings

Ssection .init origin endof(.strings); /* data to be copied to RA-
section .heap bss origin endof (.init); /* followed by heap
section .stack bss origin OxdOOO minsize (512);

/* --

/* The following line can be used to copy data from ROM into RAM
/* substitute in place of the section .data line above where the

S/* underscore is replaced with the address of the ROM where the data
/* is to be stored

/* section .data origin copiedfrom .init - .data;
/* --

1* ---
S/* Sections particular to the registers and vectors in the EVB.

/* Used by the assembler to locate the registers and interrupt vectors
/* at their proper location in memory since I/O is memory mapped. .1
/* ---

section .HllZGS bss origin HllREGORG;
section .HllVEC data origin HlIVECORG maxsize HI1VECSIZE;

/ --..-
/* Checks for sections which exceed the limits of RAM on the EVB
/* If the optional RAM is installed, then modify the limits accordingly

SFAMEIAFOSR Hintz. March 29, 1992

check endof(.heap) >- Oxlfff fatal ",C:!e area tco large-:
check sizeof(.base) > 0x34 fatal "Base page tzc Iar e";

*-----
/* Initializes some values which are used by the initializatic2 Zc-e 7::e
/* initialize various areas of RAM

set ramstart = startof(.bss);
set ramend = endof(.bss);
set _heapstart - startof(.heap);
set _heapend - endof(.heap);
set stackstart - startof(.stack);
set stackend - endof(.stack);
set initstart - startof(.init);
set initend = endof(.init);
set _datastart - startof(.data);
set _dataend = endof(.data);

check _stackend - stackstart < 256 fatal "Stack too small".

/*--
/* These object files replace functions in the library that are m;nie -
/* to the Buffalo monitor version

/* kjhstart.o, kjhiob.o and kjhbuff.o are recompiled versions cf U

/* (kjh)start.s, (kjh)iob.s, and (kjh)buffalo.s which allows using the
/* Buffalo monitor routines for I/O

/* printf.o has been compiled to use the BUFFALO I/O Calls and should
/* not be included unless necessary since it takes up quite a bit of
/* space.
/,

/* ofmt.o has been compiled with the #define FLOATS and LONGS omitted
/* to reduced size of code.
/*--

'c:\introl\kjh\kjhstart.o' /* start up routine
'c:\introl\kjh\kjhiob.o' /* buffalo input output calls
'c:\introl\kjh\kjhbuff.o'
'c:\introl\dd8\concat.o' /* puts two bytes PXed together to form an '.. .
'c:\introl\dd8\split.o' /* splits an Int into two bytes for TX to PC

readline; /* read the command line */

/*---
/* inclusion of the standard libraries to resolve external references

-lc /* use the C library
-lcio /* C i/o library
-im /* math library
-Igen /* general library /

FAMEIAFOSR Hintz. March 29. 1992

64

/* File: fcal32-3.ld
vers-l.0

/* Configuration is a Morzroia MC68HCZEV3 evalaio..

This is designed for crocgrams that are used WH he
/* BUFFALO monitor. The executable code and initiaiized ata i
/* placed in an 8Kx8 RAM at OxCOOO.
/*
/* Modification history:

KJH: for 32kbyte SRAM 1/29/92
DD: put jump commands for ISRs dir in locations at $0000 2/E/92 '

set H11RAM = OxOO; /* page containing 68HCII base page
set HllREG - OxOl; /* page containing 68HCIl registers

set HIIVECSIZE = 42; /* size of 69HC1'. vectors
set H11RAMREG = (H11RAM<<4) H1lREG;/*mask for setting HIIINIT in start.s "
set HIIREGORG = (HI1REG<<I2) /* origin of 68HCll registers
set H!IVECORG 0xl0000-HIIVECSIZE; /* origin of 68HCII veczors

set CAL START = Ox7fOO; /* start of calibration values
section .base bss origin 0 maxsize -0x34 = .base; /* uninitialized base page
storage

section .ivt origin OxOOc4 - .ivt; /* Begin Interrupt Vector Table (SC: is
first) at Ox0Oc4 */
section .textl origin OxcOO maxsize 8192 = .text;
section .text2 origin 0x1800 maxsize (CALSTART - 0x1800) = .text:

section .bss bss origin endof (.text2) bss comms;/* followed by uninit
storage*/
section .data origin endof (.bss); /* followed by data
section .const origin endof(.data); /* followed by constants
section .strings origin endof(.const); /* followed by strings
section .init origin endof(.strings); /* data to be copied to .RA;M
section .heap bss origin endof (.init); /* followed by heap
section .stack bss origin (CALSTART - 512) minsize 512;

/* --

/* The following line can be used to copy data from ROM into RAM
/* substitute in place of the section .data line above where the
/* underscore is replaced with the address of the ROM where the data
/* is to be stored
I* •
/* section .data origin _ copiedfrom .init - .data;
/ --

/*--
/* Sections particular to the registers and vectors in the EVB.
/* Used by the assembler to locate the registers and interrupt vectors i
/* at their proper location in memory since I/O is memory mapped.
/* ---

section .Hl1REGS bss origin H1lREGORG;
section .H1lVEC data origin H11VECORG maxsize HllVECSIZE;

/* --

/* Checks for sections which exceed the limits of RAM on the EVB

FAME/AFOSR Hinm March 29. 1992
65

/ f t he op tioa I .Pm i s •s ta LI e, hen. n o ~fy Zh ~:s•2::•.

check endof(.stack) > CAL 3TART tal "Cde areaC
check endof.base) > 2x34 f 3ta' "Base CaBe ::; arre'

/* Initializes some values which are used by tre n
/- initialize varicus areas of RAXM
/*---

set ramstart = startof(.bss);
set _ramend - endof(.bss);
set _heapstart = startof(.heap);
set _heapend = endof(.heap);
set stackstart = startof(.stack);
set _stackend = endof(.stack);
set _initstart - startof(.init);
set initend - endof(.init);
set _datastart = startof(.data);
set _dataend - endof(.data);

check _stackend - _stackstart < 256 fatal "Stack too small";

/*---
/* These object files replace functions in the library that are u;nique:
/* to the Buffalo monitor version
/*

/* kjhstart.o, kjhiob.o and kjhbuff.o are recompiled versions of
/* (kjh)start.s, (kjh)iob.s, and (kjh)buffalo.s which allows using the '

/* Buffalo monitor routines for I/O

/* printf.o has been compiled to use the BUFFALO 1/O Calls and shou.d
/* not be included unless necessary since it takes up quite a rC. sf
/* space./*
/* ofmt.o has been compiled with the #define FLOATS and LCNGS
/* to reduced size of code.
1'--

'c:\introl\kjh\kjhstart.o' /* start up routine
'c:\introl\kjh\kjhiob.o' /* buffalo input output calls
'c:\introl\kjh\kjhbuff.o'
'c:\introl\dd8\splitdb.o' /* splits an Int into four bytes for sav;n.g
EEPROM */

readline; /* read the command line

1*--
/* inclusion of the standard libraries to resolve externa• references
1*--

-lc /* use the C library
-lcio /* C i/o library *
-Im /* math library
-igen /* general library

FAMF/AFOSR Hina. March 29. 1992

66

6.4. Appendix IV: PC (Workstation) Software

/" George Mason University
Department of Electrical and 7-=Cputer

/ *

/* File Name: FAMEpc.C
/-
/* Authors: Berzina Ho-Mock-Qai, Darrell Duane, Ken
/* Update History: Version 1., February 23, W992
/-

#include <stdio.h>
#include <dos.h>
#include <conio.h>
#include <float.h>
#include "famedef.h"
#include "pcdef.h"

static void (interrupt far -oldserialint) (void);
static void interrupt far newserialint(void);

void main()
J unsigned char MenuChoice[3];
int Continuelt,i,j,delay; /* used to allow for continuous uperat:;n

SERIALPORT-I; /* set port to com 1 */
disableo; /* General interrupt mask */
DisablePC TXinto; /* Local TX mask */
clrscro;
InitSerialPorto; /* Initialize the UART: baud, port...
InitTXparm(); /* Initialize the TX parameters 'I
InitRXparm(); /* Initialize the RX parameters 'I
DisablePC RXinto;
enableo; /* General interrupt mask */
Continuelt=TRUE;
NewData=FALSE;
delaytime=5; /* set delay between TX equal to 5 milliseconds

while(ContinueIt)

printf("\n Fast Adaptive Maneuvering Experiment -- PC
Interface\n\n");

printf(" Do you want to send (P)osition request, (R)epetitive posit:.r-n
request, \n");

printf(" (S)ervo control values, (D)efault servo co;.tool values,
printf(" r(E)petitively send variety of servo control values, ýn");
printf(" (I)nteractively send position requests & a variety of serv:-;

values, \n");
printf(" (V)ary servo settings repetitively with keyboard, set ýT)-=e

in\n");
printf(" milliseconds to delay between transmissions, (C)hange Ccrr pert

(Q) uit?\n") ;
scanf("%ls", MenuChoice);
switch (toupper (MenuChoice [O))

case 'P':
PosOrSer-'P';
ClearRXbuffero;

FAMEýAFOSR Hinuz March 29. 992

TjXfirstU; T -Ta n 5-, 1: f ýr s z.- .a r zf nre F c s Fe q-a
AwaitAck U;
CisplayData 0;
break;

case 'RI:
PosOrSer-'P';
clrscro;
printf("\n Repetitvely serad position reo,-est tzioC.

exit.") ;
WaitForEnterfl;
while (!kbhito()4

ClearRXbuffero;
TXfirst0; /* Transmit first char of the PosReq8,,.ff
AwaitAcko; /* */
clrscro; /* clear screen ~
DisplayData 0;

break;

case IS':
PosOrSer=t S';
EnterServoControlValues U;
FillSerReqBuff U;
ClearRXbuffero;
TXfirsto; /* Transmit first char of SerReqBuff '
AwaitAck 0;
break;

case 'D':
PosOrSer-'S'; /* servo control values desired *
DefaultServoControlValues U;
FilISerReq~uffo(;
ClearP.Xbuffer U;
TXfirst 0;
AwaitAcko;
break;

case 'E':

PosOrSer-' S';
clrscro;
printf("\n Repetitvely send varying servo control request to HC:I.
printf("\n Press any key to exit.");
WaitForEnter 0;
while(!kbhito)

Vaziabl~eServoControlValues Ci);
Clr3CZr 0;
FillSerReq~uffoC;
ClearRtXbuffer 0;
TXfirsto; /* Transmit first char of the PosReqBuff ~
AwaitAck 0;

break;

case III:
j-O;

FAME/AFOSR Hintz. March 29. 1992
68

=I rscr U
printf ("\n 1'.neractively send oosizi-`:n requests Ze:-:'

i.equests \nf");
printf(" to HCII-. Press any key to, exit.");
WaitForEntero;
w'n;Ile (kbhit ()

PosOrSer= 'P';
Cl ea rRXbu f fe r
TXfirstU); 7, Tran s M t f:s i zS1 C-a r f t e

clrscro;
Display~ata ()
PosOrSer=' S, ;
VariableServoControiVa'Lu-es i);
FillSerReqBuff U;
ClearRXbuffer U;
TXfirsto; 1* Transmit first char of the Pos1Re'B-3uff
AwaitAcko;
if (++jll1) j0O;

break;

case IV':
PosOrSer='S'; /* TX servo control values ~
Conti~nueKeyboa rd-TRUE;
DefaultServoControlValues U;
clrscr()
printf("\n\n Type capital letters to increase &lower-:ase letters

decrease \no');

printf(" servo control settings\n");
printf(" (T)hrottle, (A)ileron, (E)levator, (R)udder, (C)ollect:.ve n
printf(" Type Q to quit this session\n");
WaitE'orEntero;
while (ContinueKeyboard)

KeyboardServoControlValues U;
clrscr()
FillSerReqBuff U;
ClearRXbuffer U;
TXfirst U;
AwaitAcko;

break,

case IT'-
clrscro;
printf("\n Delay time - %d rns.\n", delaytime);
printf(" Delp'y time should be greater than 4 ms. \o)
printf(u Enter new time in milliseconds to delay between transT-ssL-.-5

scanf1"%d", &de3.aytime);
break;

case 'C':
clrscro;
BeginChangeComPort:
printf("\n Change Corn Port Value. Corn port -%d. \n",SERIAL~PORT);
printf(" Enter new value for Corn port (1 or 2): '\n");
scanf ("%d", &SERIALPORT);
if((SERIALPORT K 1) 11 (SERIALPORT > 2))

FAME/AF-OSR Hintz. March 29. 1992
0()

Jprintf(" invalid Corn pcor value = *d. Re-enter~n", SZR.:-!, --

goto BeginChangeCornPort;
SERIALPORT-1; I* set port tO or cc

disableo; /* General injerrupt mask *

InitSerialPorto; /* initialize the UART: baud, pcr;...
InitTXparmo; /* Initialize the TX parameters ~
InitRXparmo; /* initialize the PX parameters ~
enablefl; /* General interrupt mask ~

break;

case 'Q':
RestoreOldlSRO); /* Restore the old interrupt service
Continuelt=E'ALSE;

break,
default:

printf(t 'Invalid key hit-- reenter \nn"),
break;

I /* end switch()o
/* end while loop for Continuelt -TRUE ~
/* end main routine *

/* this function awaits acknowledgement from the HC11 & displays an ~
/* error message if it isn't received in time

void AwaitAck (void)

delay (delaytime);
while (RXint Enabled)

I if(Wbistime(O) > (TXtime + ONEBIOSSECOND))
fprintf(" Timeout: ACK not Received from HC11! \n"');
DisablePCRXinto; 1* set equal to true so that User screen becomes

available *

I/* end while RXintEnabled *

/* end function AwaitAck()o

/* Function to initialize the UART, attach the new ISR, save the old 1SR

void InitSerialPort (void)

initserial.seral initial -bits.parity- PARITY--2 ? 3 PARITY
initserial.serial initial bits.stopbits= STOPBITS-1;
initserial. serial-initial-bits .wordlen'. WORDLEN-5;
initserial. ieria2. initial bits brk -0;
initserial.serial-initialjbits.divlatch -1;

outportb(LINECTL,initserial.serial initial char);

outportb(DIVLSB, (char) ((115200L/BAUD) & 255));
outportb(DIVMSB, (char) ((115200L/BAUD) >> 8));

initserial.serial initial bits.divlatch - 0;
outportb(LINECTL,i~nitseriil.serial initial char);

initializeISRO;

FAMEIAFOSR Hintz March 29, 1992
70

/* initializes ISR for TX & RX over ser-:.!;i oort -of ?C

void initializeISR(void)

oldserialint - getvect(SERIALINT); /* save the old 7S?. add,-ress
setvect(SERIALINT,newserialint); /* attach the new 13R. t:zý- vc__

*outportýb(MODEMCTL, (inpitortb(MODEMCTL.) &OxEF I TIR 1 RTS

outportb(PIC01, (inportb(PIC01) & SERIALIRQ)); /'* enable :ý.e 5

outportb(PICOO,EOI);

4nportb(RXDATA);
inportb(INTIDENT);
inportb (LINESTATUS);
inport (MODEMSTATUS);

/* printf(" Serial port initialized.\n"); *

/* Restore the old IS?. attached to the corn that we have ,ased
* void Restore~ldISR(void)

setvect (SERIALINT,oldserialint);
printf('Old ISR restored\n");

/* Initialize parameters for TX to 68HC~l board

void InitTXparm(void)

/* Buffer to request position values of the heliocopter ~

* ~PosReqBuffi:STARTCHARINDEX]-STARTCHAR;
PosReqBuff[COMCHARINDEXJ=POS REQ COM CHAR;
PosReqBuff (POSREQ S§TRINGLENGTH-l]-STOPCHAR;

TXindex-O;

1* Prompts user for values to request servo control on heliJocopter.

void FillSerReqBuff (void)

SerReqBuff [START CHAR INDEXI=START CHAR;
SerReqBuff(COMCHfARINDbEXI-SERREQCOMCHAR;

SerReqBuffl:THROTTLEMSB] -(unsigned char) (ServoValues[rHR0T.TLE.'»>>);
put msbits here */

SerReqBuff[THROTTLELSB] - (unsigned char) ServoValuesL-TMRO'TTLE>''
lsbits. here *

FAME/AFOSR Hiznz March 29, 1992

priritf ('Throctle: %4d'.n', Se:-7oVaK1,.es-iOTE

SerReq~uff[AILERCNMSB] =(un~signed ar(evalsA:RN->
put Tmsbits here '

SerReqBuff[AILERON_LSBj= (,zisigned char)Servc!,al,,es'A::E-Rc-:'
Isbits here ~

printf ("Aileron: ~dnev~e(LRN

SeraeqBuff [ELEVATORMSBI =(unsigned char) (ServoValues EA~>'
put msbits here */

SerReq~uff [ELEVATORLSBI = (unsigned ca~rza s~''F
Isbits here *

printf("Elevator: %4d\n'",Servovalues[ELEVATORJ):

SerReqBuff [RUDDERMSB] =(unsignedchr(Sroaes 2E»,
rnsbits here */

SerReqBuff[RUDDERLSB] = (unsigned char)ServoValuesrRDDER.> cl_
Isbits here */

printf ("Rudder: %4d\n", ServoValues [RUDDER]);

SerReqBuff [COLLECTIVEMSBJ -(unsigned char) (ServoValuesrCOLLE-T:VE: »>>ý
/* put msbits here *

SerReqBuff [COLLECTIVELSB] (unsigned char) ServoValues ýýOOLLEC::V%''ý;
put isbits here */

printf('Collective: %4d\n",ServoValues[COLLECTIVEJ');

SerReqBuff[SERREQ_-STRINGLENGTH-2 J=Checksum(SERREQ S7?TV ENC H
SerReqBuff); 1* Calculate Cýhecksum for servo control1 v-alues *7
SerReqBuff[SERREQSTRINGLENGTH-i]=STOPCHAR;

1/* end function FillSerReqsuff*/

/* Takes input from keyboard to determine servo control values.

void EnterServoControlValues (void)

printf("\nEnter servo control value between 2000 & 4000 for 'MR2:TLE:
scanf("%d", &ServoValues[THROTTLE]);

printf("\nEnter servo control value between 2000 & 4000 for AILERO.N:
scanf ("%d", &ServoValues (AILERON]);

printf("\nEnter servo control value between 2000 & 4000 for ELEVATZR:)

scanf("%d", &ServoValue3[ELEVATOR]);

printf("\nEriter servo control value between 2000 & 4000 for RUDDER: ;

scanf("%d", &ServoValues(RtJDDER]);

printf("\nlnter servo control value between 2000 & 4000 for COLLECT2:E:
scane(%d", &ServoValues(COLLECTIVE]);

/* end function EnterServoControlValues()*/

void DefaultServoControlVal~ues (void)

printf('\nLoading Default Servo Control Values \n"');

FAMEJAFOSR Kinmz March 29. 1992

72

ServoValues (AILERON]=AILERCýNDEF7AULT;
ServoValues (ELEVATOR] ELEVATýORDEFAULTý;
ServoValues (RUDDER] =RUDDERDE7FAUL T;
ServoValues (COLLECTIVE] =COLLEC-T'VE DEFAULT;

i/* end function DefaultServoControlValues */

void VariableServoControlValues (it multiplier)

pri4ntf ("\nLoading Variable Servo Control Val1--e set %d~

ServoVaiues(TLHROTTL-EJ=ONE MS+(in,-t) ((m,-uti.-4pi'ez: IONE yO
ServoValues [AILERCNI =ONEMS+(int,) ((mulciplier *O-NE MSIK

Servoalue(ELEATOR=ONEMS+(init) ((multip].ier O NE MS),
ServoValuesERUDDER]=CNEMS+(int) ((multiplier IONEms)/0-ý);
ServoValuesECOLLEC:TIVE]t;ONE .MS+(int) ((multipli-er * ONE mS-)1,)

/* end function VariableServoControlValues *

void KeyboardServoControlValues (void)

while (kbhit 0)

switch (getcho)
case ITV:

ServoValues (THROTTLE] 4-SERVOCHANGERATE;
break;
case It':

ServoValues (THROTTLE] --SERVOCHANGERATE;
break;
case 'A':

ServoValues (AILERON] +-SERVOCHANGERATE;
break;
case 'a':

ServoValues (AILERON] --SERVO CHANGERATE;
break;
case 'E':

ServoValues (ELEVATOR] -s-SERVOCHANGERATE;
break;
case 'e':

ServoValues (ELEVATOR] --SERVOCHANGERATE;
break;
case 'R':

ServoValues (RUDDER] +SERVOCHANGERATE;
break;
case 'r':

ServoValues (RUDDER] --SERVOCHANGERATE;
break;
case 'C':

ServoValues (COLLECTIVE] 4-SERVOCHANGERATE;
break;
case 'c':

ServoValues (COLLECTIVE] --SERVOCHANGERATE;
break;
case IQ':
case 'q':

ContinueKeyboard-FALSE;

FAME/AFOSR Hirnz March 29, 1992

break;
default:
break;
1* end switch()o

I/* end while(kbhito))z
I/* end function KeyboardServoControiValue5() ~

I* Initiates TX Sequence to the HCl1

void TXfirst (void)

TXindex-1; /* This will be the index that the ISR will! use tz: -X -
first value *

/* This is not the TX ISR ~

while(getbit(inportb(LINESTATtJS),5)--O) (putch('w'); outzh(' 7);

/* wait for TX to complete ~
switch (PosOrSer)

case 'P':
outportb(TXDATA,PosReq~uff(START CHARINDEX]);
EnablePCTXint();
break;

case 'S':
outportb(TXDATA, SerReqsuff rSTART CHAR INDEX]);
EnablePCTXinto;
break;

default:
printf ("Error Unknown Type of TX \n");
break;

TXtime-biostime (0);

/*initialized flags and semaphores for receiving data from HC11

void InitRXparm(void)

RXstream-FALSE;
RXindexmmO:
outportb(LINECTL, (inportb(LINEC'rL) 1x80));

/* printf("DL&B bit in LCR is set -1"1); *I
/* printf(OLCA - Ox%x\n",inportb(LINECTL)); *//* Line Control Register
/* priritf(3&UDO - Ox%x ",inPortb(DIVLSB)); '
/'* printf("BAUDI. - Ox%x ",inportb(DIVMSB)); *

out portb(LINECTL, (inportb(LINECTL) &Ox7f));
1* printf("DIAB bit in LCR is set - 0 "); *
1* Printf("DATA =Ox%x\n", inportb(RXDATA)); *//* Receive data value
1* printf("LCR =Ox~x\n", inportb(LINECTL)); *1/* Line Control. Register
1* printf("MCR -Ox%x\n", inportb(MODEMCTL)); */*/ Modem Control Recis:er

1* printf("IER -Ox%x\n", inportb(INTENABLE)); *1/* Interrupt Enable
Register *

FAMEJAFOSR Rinta, March 29,.1992
74

/r printf ("LSR. = CX~x\n', jnzporzb_ (:NESTAT'lS)

1* rintf (",MSR =xxni~O:b2ESAUV
Values *

/* printf ("110 = Ox%x\n.", iprbNIET)~
&Causes *

/* Clears RX buffer *

P void C-learRXbuffer (void)

char extra;

while (getbit (inport (LINESTATUS), 0))
extra-inportb(RXDATA);

printf(uCleared byte -Ox%x -'%c' from serial port RX
buffer.\n", (unsigned char)extra, extra);

/* end function ClearXbuffer ~

1* Checks for the noise and overrun errors after reception ~

void RXerror (void)

if ((getbit(WorkLinestat,3)!=0)11 (getbit(WorkLinestat,2 !=O))
NoiseFraming=TRLJE;

els NoiseFraming=FALSE;

if (getbit(WorkLinestat,l) '=0)
if ((RXindex=-(POS_-ACKSTRINGLENGTH-l-l))&&(WorkRXd--ata-==52?---ý-

Overrun-FALSE;
else

Overrun=TRUE;
else

Overrun=FALSE;

/* Test if the received word is the start word

void ResearchStartChar (void)
if (WorkRXdata--STARTCHAR)

RXindox-STARTCHARINDEX;

/* ptch'A',- pt~h'!forA start char no received!'

I putream-TRU; putch('!'); A! /d splyS o trt char no received'j iiiii
/*Function to receive data from the HCll

vodCharRX (void)

FAMEJAFOSR HimMrh29. 1992

RXindex++;

if(RXindex-- _ CHAR-INDEX) /* should 'h~s te th-e
Work- -mandChar=WorkR.Xdata;
switch (WorkC:,.TaandChar)

case POS ACK COM CHAR:
PosAckBu-ff[CCýMCHAR_ NDEX] =WorkRXdata;
break;

case SER ACK COM CHAR:
PosAckBuff (COdMC-HARINDEX) =WorkRXd4ata;
break;

defaul.t:
putch ('TJ'; putch(')
ClearWorkVaro;

break;

* end switch for Command Character ~
/* er- should this be the Command Character /

else I /* this is not the command character ~

switch (WorkComrnandChar)

case POS ACK COM CHAR:
if((RXii~dex-> COMCHAR INDEX)

&&(RXindex <- (POSACRSTRINGLENGTH-i-i))
IPosAckBufffRXindex]=WorkRXdata; /* put Position --r Checksu.;-

values into array to be un-concatenated */
/* putch('I'); print 'I' to the screen ~

else
if(RXindex -= P05 ACK STRING LENGTH-i)

Iif(WorkRXdata-== STOPCHAýR)
iCornpleteStreamo);
DisablePC RXint();

else { putchT'Y'); putch('!'); ClearWorkVaro;
else

(ClearWorkV. 11); putch('Z'); putch('V');I
/* error out ýf synch *

break;

case SERACKCOM CHAR: /* is this a servo control ackncw'edcierrer.i
if(RXinEdex-=SER_ ACKSTRINGLENGTH-1) /* should this be tr'e s~c

char? ~
if(WorkRXdata--STOP_-CHAR) /* is this the stop char? *

ClearWorkVaro,
1' putch('R'); putch('!'); Servo Control Acknowledgement Rxed

/ * disable rx inter ~
else I* error */
Iputch('W'); putch('!'); ClearWorkVaro;I

else
fPutch('X'); putch('!'); ClearWorkVaro;I

break;

default:
printf("Work Control Word Not Recognized as RXed "
ClearWorkVar;

FAME/AFOSR Hintz. March 29. 1992
76

break;
/* End of switcho) "/

I* End of else this shouldn't be the Coand Cha.a.jer

S* /* end function CharRX '/

/* Initialize semaphores for RXing a new string from the ACI.

void ClearWorkVar(void)
{ int i;

RXindex=0;
RXstream=FALSE;
DisablePCRXinto;

/* Called upon RX of Stop char of Position ackncwledgemeno sequer.e

void CompleteStream(void)

if(PosAckBuff[POSACKSTRINGLENGTH-I-1] -- Checksum(POS ACK STRI:NG 3-LE_ ,
PosAckBuff)) /Q Checks if the checksum is correct */

/* printfC"\nStream complete\n"); */
/* printf("command char = %x \n",WorkCommandChar); */

NewData-TRUE;

else
(printf("Checksum Error: RXed Checksum= %x, Calculated Checksum = %x

\n",PosAckBuff[POS__ACKSTRINGLENGTH-I-1], Checksum(POSACKSTRINGIENGS7,
PosAckBuff));

ClearWorkVar();)

*/*This function calculates the checksum of sequences
/* ignores 0th, last, and (last - 1) elements of array
/* i.e., it ignores the start, checksum, and stop characters

unsigned char Checksum(int stringlength, unsigned char CheckArray[j)

unsigned char ChecksumResult = 0;
unsigned int sum = 0;
int i;

for(i - 1; i < stringlength - 2; i++)
sum - sum + CheckArray~i];

ChecksumResult - (unsigned char)sum;
return ChecksumResult;

/* end checksum function */

FAMEIAFOSR Hintz. March 29, 1992

! ! 77

/* concats 2 unsigned characters to an in-eger

int ConcatInt(unsigned char MSbi!:3,unsigned char :.Sci-)

unsigned mnt result;

result= (int) MSbits;
result=(result << 8);
result=result+LSbits;
return result;

1* Concats Position values from the RX buffer &displays zhrr o :-e

void DisplayData (void)
mnt i;

clrscro;
printf(" X= %7.2f cm \n", (floatlConcat int(PosAck~ufffX MSB3>
PosAckBuff[XLSBD)/100);
printf(" Y= %7.2f cm \n", (float)ConcatInt(PosAckBuff:YMSB3,
PosAckBuff[YLSBD)/100 I
printf(" Z= %7.2f cm \n", (float)ConcatInt(PosAckBuf±rZ MSqB:
?osAckBuff(ZLSBJ)/100);

printf(" Pitch- %7.2f deg \n", (float)Concatint(PosAckBuff'PITCHM.,ýSB>"
PosAckBuff[PITCHLSB) /100);
printf(" Roll- %7.2f deg \n", (float)Concat-int(PosAck~uff[RO)LL .MS2',

PosAckBuff[ROLL_-LSB])/100);
printf(' Yaw- %7.2f deg \n", (float)Concat_:-nt(PosAckBufF:YAW MsB:,

PosAckBufftYAW-LSBI) /100);

/* printf(" X- %7.2f cm MSB: %2x LSB: %2x\n",
(float)Concat Int(PosAckBuff[X MSB], PosAckBuff[XLSB])/1CC,
PosAckBuff(XMSB], PosAckBuff[RLSB));

printf("I 7- %7.2f cm MS9: %2x LSB: %2x\n",
(float)Concatint(PosAckBuff(YMSB], PosAck~uff[YLSBDI/100,
PosAckBuff(YY RS8], PosAckBuff[YLSB]);

printf(" Z- %7.2f cm MSB: %2x LSB: %2x\n",
ffloat)ConcatInt(PosAckBuff(Z MSB], PosAck~uff(Z-LSB]) /100,
PosAck~uff[ZMSB], PosAck~uff[(ZLSBI);

printf("I Pitch- %7.2f deg MSB: %2x LSB: %2x\n",
(float)Concat nt (PosAck~uff (PITCHMSB], PosAckBufffPITCHLSB] 1/1.00,
PosAckBuff (PITCHMSB], Po3AckBuff(PITCHLSB]);

printf(" Roll- %7.2f deg MSB: %2x LESB: %2x\n",
(float)Concat Int(PosAckBufffROLLMSB], PosAckBuff(RCLLLSI) /100',
PosAckBuff(RO~LMSB], PosAckBuff[ROLLLSB]);

printf(O YavZ %7.2f deg MSB: %2x LSB: %2x\n",
(floatlConcat Int(PosAck~uff [YAW MSB], PosAckBuff(YAWLSBfI/100,
PosAckBuff[YAWKMSB], PosAckBuff[YAWLSB])

for(i-0; i<-POSACKSTRINGLENGTH-1 ; i4-+) PosAckBuffli)20;

/* ISR for transmitting to HC11

FAMEIAFOSR Hinmz March 29, 1992

78

void PC TX TSR(voi-)

switch (PosOrSer)

case 'P': /* We want to transmit the :sR•ec
while(getbit (in5or)b(L:-ESTAUS), -- =) uh('v . ..
outoortb(TXDATA,?PcsRea~ff<TXind~e:<);

if(TXindex++==m2$ REQ SRING ..NGTH- L
EnablePC k•Xi:t();

break;

case 'S': /I We want to transm!: :te serv-'--------------------
while (aetbit (inportb(LINESTA.tjS) ,5) ==) ipL.- (' z'i;
outportb(TXDATA, SerReqBuff[TXindexj);
if(TXindex*+==SER REQ STRINGLENGTH-I) j DisablePCTX-ný.);

EnablePC RXinti); I
break;

default:
printf("general error \n");
break;

I /* end switch() */

"/* .-------------------------------------
/* Reception ISR
/--- --.

void PC RX ISR(void)
J WorkRXdata=inportb(RXDATA);

/* putch(WorkRXdata); putch('*'); display values received from HC1'*/
WorkLinestat-inportb(LINESTATUS);

*RXerror(;

if ((Overrun==FALSE)&&(NoiseFraming==FALSE))
if (RXstream==FALSE) /* we want the start char "/
(/* put:h('f'); */ ResearchStartChar();
else

el e { /* putch('t''; */ CharRX ();
*i else

ClearWorkVaro;

1*------------- 7--
/* New communication interrupt service routine
1*--

static void interrupt far newserialint(void)
{ char identreg;

identreg-inportb(INTIDENT);

switch (identreg)

case 4:
PC RX ISRO;
break;

case 2:

FAMEIAFOSR Hintz. Mvch 29. 1992

brea ;

default:
printf ("default int'n")
inportb (RXDATA);
break;

outportb(PICC,EC);

......... ttt tr t, ..

/• Pauses for user to read message on screen.

void WaitForEnter (void)

printf ("\n Press any key to begin.");
while(kbhit ())

getch (:

} /* end function WaitForEnter() o /

/* File which contains some basic functions
/*--
unsigned char clearbit (unsigned char reg,unsigned char NumBit)

unsigned char treg;

switch (NumBit)
case 0: treg - reg & MASKO;

break;
case 1: treg = reg & MASK!;

break;
case 2: treg = reg & MASK2;

break;
case 3: treg - reg & MASK3;

break;
case 4: treg - reg & MASK4;

break;
case 5: treg - reg & MASK5;

break;
case 6: treg - reg & MASK6;

break;
case 7: treg - reg & MASK7;

break;

return (treg);

unsigned char setbit(unsigned char reg,unsigned char Num.it)
unsigned char treg;

switch (NumBit)
case 0: treg - reg I CMASKO;

break;

FA ME/AFOSR Hintz, March 29. 1992

80

zase : -reak =2Zg S

break;
*case 2: treg =req MS v Z

case 4: treg = req mA S K :
break;

4ae : treg - reg CMASK4:
break;

case 6: treg = req CY.ASK65;
break;

case 6: treg = req CM:ASK6;
break;

return (treg);

unsigned char getbit(unsigned char reg,unsigned char Nurr3i:ý

unsigned char BitResult;

switch (NumBit.)
case 0: Bit.Result=(reg & CMASKO);

break;
case 1: BitResult=(reg & CMASKl};

break;
case 2: BitResult=(reg & CMASK2);

break;
case 3: BitResult=(reg & CMASX3);

break;
case 4: BitResuit=(reg & CIMASK4);

break;
case 5: BitResultt=(reg & CMASKS);

break;
case 6: BitResult=(reg & CMASK6);

break;
case 7: BitResult=(reg & CMASK7);

break;

return (BitResult);

FAME/AFOSR Himtz March 29, 1992

6.5. Appendix V: Mechanical Drawings

Top View n I r,

1 1-//8'

/4 L

""..

Front View Side View Oetg#

Material. 1/8" Aluminum Ken Hintz
Bracket NB2 Gere Mason Unjversj,ý,

8/9e/891
(703)993-1592

Figure 2 Bracket supporting potentiometer at center of base (H) of stand.

FAME/AFOSR Hinmz Murch 29. -1992
82

I I

t II ,

Figure 3 Relative location of brackets and potentiometers at middle joint.

FAMEIAFOSR Hinmz March 29, 1992

Top View

N __

Li

J.J

g e-ll

Material: IW/ Alumirun ,13/ 1& Side View

Front View . 0-91 1- 3

8/29/91
Bracker N83 (793*93-I592

Figure 4 Bracket for supporting azimuth potentiometer at middle joint.

FAME/AFOSR Hintz. March 29, 1992

84

I ic

--CT]f'TI ~. e-s~tr-5/e* "

•s3 'g [

IV-

Side Vt".

94M Nwa?

r Figure 5 Bracket for supporting elevation potentiometer at middle joint.

FAME/AFOSR Hintz, March 29, 1992

S5

0-I/28

"0 "-1/8/

C~entity: ra wrwn #2~

N-

Make Adlapter Rheft_ _ _ _ _ _ _ _ _

Ouantity: 2 Drwix #2
htteriWl: Steel Ken Hintz

George Mson LUniversity11/1/91
(7W 93-1592

Figure 6 Adapter shaft to connect potentiometer to H-potentiometer and Azimuth-Poteniometer.

FAMEIAPOSR Hintz. March 29. 1992

86

0

-- • "•-1-5/8"
* -- 1, -7/8"

2- 1/4,
C" 2-7/116"
Y- /il ano tap for set screwCn

*_ _ __ 'r--- -

0-1/2" 0 0-1/8S

hole NOT threaded

S~Drawing #3
Ken Hintz
Georgg Mason University11/1/91

(703)993-1592

Figure 7 Adapter to connect elevation potentiometer to parallel elevation arms.

* FAMEIAFOSR Hintz, March 29. 1992

0s

S-- -2-3V/i'

1 aD

Top View

* ,-tir j tL-

End View

00

Side View L Le-7/_

-rawing o i
Ken Hintz
George Meson Untversit
8/20/91----.- ••v •(.783)993- i592

Material: 1/8" Aluminum
Bracket NB I

Figure 8 Bracket to support yaw potentiometer which connects directly to virtical helo support shaft.

FAME/AFOSR Hintz, March 29, 1992

88

0

Roller Bearing

Figure 9 Relative location of support components at helicopter end of stand.

Countersink end tap 8-32 0111 and Ta r alien set screw

Oo NOT tap hote

9-71r-0-/1j

Adap or Shaft V
011W1 t I Orawing #4
matrtrlh Steel Ken Hintz

• George Mason Unlversity
it1/t/9
(703)993-1592

Figure 10 Shaft to support helicopter and connect to yaw potentiometer. Length could be extcndcd
to increase range of motion and still prevent tail rotor/boom strikes to stand.

* FAME/AFOSR Hintz, March 29, 1992

S9

